Rykiel EJ. Towards a definition of ecological disturbance. Austral Ecology. 1985;10:361–5.
Glasby TM, Underwood AJ. Sampling to differentiate between pulse and press perturbations. Environ Monit. Assess. 1996;42:241–52.
Google Scholar
Sullivan TP, Sullivan DS. Vegetation management and ecosystem disturbance: impact of glyphosate herbicide on plant and animal diversity in terrestrial systems. Environ Rev. 2003;11:37–59.
Google Scholar
Landers TF, Cohen B, Wittum TE, Larson EL. A review of antibiotic use in food animals: perspective, policy, and potential. Public Health Rep. 2012;127:4–22.
Google Scholar
Shade A, Peter H, Allison SD, Baho DL, Berga M, Bürgmann H, et al. Fundamentals of microbial community resistance and resilience. Front Microbiol. 2012;3:417.
Google Scholar
Hahn M. The rising threat of fungicide resistance in plant pathogenic fungi: Botrytis as a case study. J Chem Biol. 2014;7:133–41.
Google Scholar
Schaeffer RN, Vannette RL, Brittain C, Williams NM, Fukami T. Non-target effects of fungicides on nectar-inhabiting fungi of almond flowers. Environ. Microbiol. Rep. 2017;9:79–84.
Google Scholar
Zubrod JP, Bundschuh M, Arts G, Brühl CA, Imfeld G, Knäbel A, et al. Fungicides: An Overlooked Pesticide Class? Environ Sci Technol. 2019;53:3347–65.
Google Scholar
Delmas CEL, Dussert Y, Delière L, Couture C, Mazet ID, Richart Cervera S, et al. Soft selective sweeps in fungicide resistance evolution: recurrent mutations without fitness costs in grapevine downy mildew. Mol. Ecol. 2017;26:1936–51.
Google Scholar
McDonald MC, Renkin M, Spackman M, Orchard B, Croll D, Solomon PS, et al. Rapid parallel evolution of azole fungicide resistance in Australian populations of the wheat pathogen Zymoseptoria tritici. Appl Environ Microbiol. 2019;85:e01908–e01918.
Google Scholar
Riat A, Plojoux J, Gindro K, Schrenzel J, Sanglard D. Azole Resistance of environmental and clinical Aspergillus fumigatus isolates from Switzerland. Antimicrob Agents Chemother. 2018;62:e02088–e02017.
Google Scholar
Verweij PE, Snelders E, Kema GHJ, Mellado E, Melchers WJG. Azole resistance in Aspergillus fumigatus: a side-effect of environmental fungicide use? Lancet Infect Dis. 2009;9:789–95.
Google Scholar
Wise K, Mueller D Are fungicides no longer just for fungi? An analysis of foliar fungicide use in corn. APSnet Features doi 2011; 10.
Kandel YR, Hunt C, Ames K, Arneson N, Bradley CA, Byamukama E, et al. Meta-Analysis of Soybean Yield Response to Foliar Fungicides Evaluated from 2005 to 2018 in the United States and Canada. Plant Dis. 2021;105:1382–9.
Google Scholar
Imfeld G, Vuilleumier S. Measuring the effects of pesticides on bacterial communities in soil: A critical review. Eur J Soil Biol. 2012;49:22–30.
Google Scholar
Fournier B, Dos Santos SP, Gustavsen JA, Imfeld G, Lamy F, Mitchell EAD, et al. Impact of a synthetic fungicide (fosetyl-Al and propamocarb-hydrochloride) and a biopesticide (Clonostachys rosea) on soil bacterial, fungal, and protist communities. Sci Total Environ. 2020;738:139635.
Google Scholar
Morton V, Staub T A Short History of Fungicides. APSnet Feature Articles. 2008.
Brent KJ, Hollomon DW Fungicide resistance in crop pathogens: how can it be managed? 2007. FRAC Monogr. No. 1, Global Prot. Fed.
Perazzolli M, Antonielli L, Storari M, Puopolo G, Pancher M, Giovannini O, et al. Resilience of the natural phyllosphere microbiota of the grapevine to chemical and biological pesticides. Appl Environ Microbiol. 2014;80:3585–96.
Google Scholar
Knorr K, Jørgensen LN, Nicolaisen M. Fungicides have complex effects on the wheat phyllosphere mycobiome. PLoS One. 2019;14:e0213176.
Google Scholar
Sapkota R, Knorr K, Jørgensen LN, O’Hanlon KA, Nicolaisen M. Host genotype is an important determinant of the cereal phyllosphere mycobiome. New Phytol. 2015;207:1134–44.
Google Scholar
Southwell RJ, Brown JF, Welsby SM. Microbial interactions on the phylloplane of wheat and barley after applications of mancozeb and triadimefon. Australasian Plant Pathol. 1999;28:139.
Dickinson CH, Wallace B. Effects of late applications of foliar fungicides on activity of micro-organisms on winter wheat flag leaves. Trans Br Mycological Soc. 1976;67:103–12.
Freimoser FM, Rueda-Mejia MP, Tilocca B, Migheli Q. Biocontrol yeasts: mechanisms and applications. World J Microbiol Biotechnol. 2019;35:154.
Google Scholar
Fonseca Á, Inácio J Phylloplane Yeasts. In: Péter G, Rosa C (eds). Biodiversity and Ecophysiology of Yeasts. 2006. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 263–301.
Cobban A, Edgcomb VP, Burgaud G, Repeta D, Leadbetter ER. Revisiting the pink-red pigmented basidiomycete mirror yeast of the phyllosphere. Microbiologyopen. 2016;5:846–55.
Google Scholar
Cadez N, Zupan J, Raspor P. The effect of fungicides on yeast communities associated with grape berries. FEMS Yeast Res. 2010;10:619–30.
Google Scholar
Schaeffer RN, Mei YZ, Andicoechea J, Manson JS, Irwin RE. Consequences of a nectar yeast for pollinator preference and performance. Funct Ecol. 2017;31:613–21.
Agler MT, Ruhe J, Kroll S, Morhenn C, Kim S-T, Weigel D, et al. Microbial Hub Taxa Link Host and Abiotic Factors to Plant Microbiome Variation. PLoS Biol. 2016;14:e1002352.
Google Scholar
Tilman D. The ecological consequences of changes in biodiversity: a search for general principles. Ecology. 1999;80:1455.
Ripple WJ, Beschta RL. Linking wolves and plants: aldo leopold on trophic cascades. BioScience. 2005;55:613.
Sahasrabudhe S, Motter AE. Rescuing ecosystems from extinction cascades through compensatory perturbations. Nat Commun. 2011;2:170.
Google Scholar
Zhou J, Deng Y, Luo F, He Z, Tu Q, Zhi X. Functional molecular ecological networks. mBio. 2010;1:e00169–e00210.
Google Scholar
Wagg C, Schlaeppi K, Banerjee S, Kuramae EE, van der Heijden MGA. Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. Nat Commun. 2019;10:4841.
Google Scholar
Claassen R, Bowman M, McFadden J, Smith D, Wallander S. Tillage intensity and conservation cropping in the United States. US Dep Agric Bull Econ Rese Ser. 2018;197:1–21.
Gdanetz K, Trail F. The wheat microbiome under four management strategies, and potential for endophytes in disease protection. Phytobiomes J. 2017;1:158–68.
Longley R, Noel ZA, Benucci GMN, Chilvers MI, Trail F, Bonito G. Crop management impacts the soybean microbiome. Front Microbiol. 2020;11:1116.
Google Scholar
Sułowicz S, Cycoń M, Piotrowska-Seget Z. Non-target impact of fungicide tetraconazole on microbial communities in soils with different agricultural management. Ecotoxicology. 2016;25:1047–60.
Google Scholar
Karlsson I, Friberg H, Steinberg C, Persson P. Fungicide effects on fungal community composition in the wheat phyllosphere. PLoS One. 2014;9:e111786.
Google Scholar
Robertson GP, Hamilton SK Long-term ecological research at the Kellogg Biological Station LTER site. The ecology of agricultural landscapes: Long-term research on the path to sustainability 2015; 1–32.
Fehr WR, Caviness CE, Burmood DT, Pennington JS. Stage of development descriptions for soybeans, Glycine max (L.) Merrill 1. Crop Sci. 1971;11:929–31.
Gdanetz K, Noel Z, Trail F. Influence of plant host and organ, management strategy, and spore traits on microbiome composition. Phytobiomes J. 2021;5:202–19.
Lundberg DS, Yourstone S, Mieczkowski P, Jones CD, Dangl JL. Practical innovations for high-throughput amplicon sequencing. Nat Methods. 2013;10:999–1002.
Google Scholar
Bowsher AW, Benucci GMN, Bonito G, Shade A. Seasonal Dynamics of Core Fungi in the Switchgrass Phyllosphere, and Co-Occurrence with Leaf Bacteria. Phytobiomes J. 2021;5:60–68.
Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: Community Ecology Package v. 2.5-7. 2020
Anderson MJ, Willis TJ. Canonical analysis of principle coordinates: a useful method of constrained ordination for ecology. Ecology. 2003;84:511–25.
Mandal S, Van Treuren W, White RA, Eggesbø M, Knight R, Peddada SD. Analysis of composition of microbiomes: a novel method for studying microbial composition. Microb Ecol Health Dis. 2015;26:27663.
Google Scholar
Shade A, Stopnisek N. Abundance-occupancy distributions to prioritize plant core microbiome membership. Curr Opin Microbiol. 2019;49:50–58.
Google Scholar
Liaw A, Wiener M. Classification and regression by randomForest. R News. 2002;2:18–22.
Kursa MB, Rudnicki WR. Feature selection with the Boruta package. J Stat Softw. 2010;36:1–13.
Kurtz ZD, Müller CL, Miraldi ER, Littman DR, Blaser MJ, Bonneau RA. Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput Biol. 2015;11:e1004226.
Google Scholar
Lindow SE, Brandl MT. Microbiology of the phyllosphere. Appl Environ Microbiol. 2003;69:1875–83.
Google Scholar
Wang K, Sipilä TP, Overmyer K. The isolation and characterization of resident yeasts from the phylloplane of Arabidopsis thaliana. Sci Rep. 2016;6:39403.
Google Scholar
Sun PF, Fang WT, Shin LY, Wei JY, Fu SF, Chou JY. Indole-3-acetic acid-producing yeasts in the phyllosphere of the carnivorous plant Drosera indica L. PLoS One. 2014;9:e114196.
Google Scholar
Yurkov AM, Kurtzman CP. Three new species of Tremellomycetes isolated from maize and northern wild rice. FEMS Yeast Res. 2019;19:foz004.
Google Scholar
Sommermann L, Geistlinger J, Wibberg D, Deubel A, Zwanzig J, Babin D, et al. Fungal community profiles in agricultural soils of a long-term field trial under different tillage, fertilization and crop rotation conditions analyzed by high-throughput ITS-amplicon sequencing. PLOS ONE. 2018;13:e0195345.
Google Scholar
Li A-H, Yuan F-X, Groenewald M, Bensch K, Yurkov AM, Li K, et al. Diversity and phylogeny of basidiomycetous yeasts from plant leaves and soil: proposal of two new orders, three new families, eight new genera and one hundred and seven new species. Stud Mycol. 2020;96:17–140.
Google Scholar
Gilbert DG. Dispersal of yeasts and bacteria by Drosophila in a temperate forest. Oecologia. 1980;46:135–7.
Google Scholar
Starmer WT, Peris F, Fontdevila A. The transmission of yeasts by Drosophila buzzatii during courtship and mating. Animal Behaviour. 1988;36:1691–5.
Murrell EG. Can agricultural practices that mitigate or improve crop resilience to climate change also manage crop pests? Curr Opin Insect Sci. 2017;23:81–88.
Google Scholar
Latin R A Practical Guide to Turfgrass Fungicides. 2017.
Banerjee S, Walder F, Büchi L, Meyer M, Held AY, Gattinger A, et al. Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. ISME J. 2019;13:1722–36.
Google Scholar
Schmidt JE, Kent AD, Brisson VL, Gaudin ACM. Agricultural management and plant selection interactively affect rhizosphere microbial community structure and nitrogen cycling. Microbiome. 2019;7:146.
Google Scholar
Brockhurst MA, Buckling A, Gardner A. Cooperation peaks at intermediate disturbance. Curr Biol. 2007;17:761–5.
Google Scholar
Brockhurst MA, Habets MGJL, Libberton B, Buckling A, Gardner A. Ecological drivers of the evolution of public-goods cooperation in bacteria. Ecology. 2010;91:334–40.
Google Scholar
Kwak M-J, Jeong H, Madhaiyan M, Lee Y, Sa T-M, Oh TK, et al. Genome information of Methylobacterium oryzae, a plant-probiotic methylotroph in the phyllosphere. PLoS One. 2014;9:e106704.
Google Scholar
Yoshida S, Hiradate S, Koitabashi M, Kamo T, Tsushima S. Phyllosphere Methylobacterium bacteria contain UVA-absorbing compounds. J Photochem Photobiol B. 2017;167:168–75.
Google Scholar
Grady KL, Sorensen JW, Stopnisek N, Guittar J, Shade A. Assembly and seasonality of core phyllosphere microbiota on perennial biofuel crops. Nat Commun. 2019;10:4135.
Google Scholar
Delmotte N, Knief C, Chaffron S, Innerebner G, Roschitzki B, Schlapbach R, et al. Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc Natl Acad Sci USA. 2009;106:16428–33.
Google Scholar
Source: Ecology - nature.com