in

Novel form of collective movement by soil bacteria

  • Kuzyakov Y, Razavi BS. Rhizosphere size and shape: Temporal dynamics and spatial stationarity. Soil Biol Biochem. 2019;135:343–60.

    CAS 
    Article 

    Google Scholar 

  • Teixeira PJ, Colaianni NR, Fitzpatrick CR, Dangl JL. Beyond pathogens: Microbiota interactions with the plant immune system. Curr Opin Microbiol. 2019;49:7–17.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Alirezaeizanjani Z, Großmann R, Pfeifer V, Hintsche M, Beta C. Chemotaxis strategies of bacteria with multiple run modes. Sci Adv. 2020;6:eaaz6153.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gao S, Wu H, Yu X, Qian L, Gao X. Swarming motility plays the major role in migration during tomato root colonization by Bacillus subtilis SWR01. Biol Control. 2016;98:11–17.

    CAS 
    Article 

    Google Scholar 

  • Mitchell JG, Kogure K. Bacterial Motility: Links to the environment and a driving force for microbial physics. FEMS Microbiol Ecol. 2006;55:3–16.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kalamara M, Spacapan M, Mandic-Mulec I, Stanley-Wall NR. Social behaviours by Bacillus subtilis: Quorum sensing, kin discrimination and beyond. Mol Microbiol. 2018;110:863–78.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Posada LF, Álvarez JC, Romero-Tabarez M, de-Bashan L, Villegas-Escobar V. Enhanced molecular visualization of root colonization and growth promotion by Bacillus subtilis EA-CB0575 in different growth systems. Microbiol Res. 2018;217:69–80.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Beauregard PB, Yunrong C, Vlamakis H, Losick R, Kolter R. Bacillus subtilis Biofilm induction by plant polysaccharides. Proc Natl Acad Sci USA. 2013;110:1621–30.

    Article 

    Google Scholar 

  • Allard-Massicotte R, Tessier L, Lécuyer F, Lakshmanan V, Lucier J. Bacillus subtilis early colonization of Arabidopsis thaliana roots involves multiple chemotaxis receptors. mBio 2016;7:1–10.

    Article 

    Google Scholar 

  • Massalha H, Korenblum E, Malitsky S, Shapiro OH, Aharoni A. Live imaging of root-bacteria interactions in a microfluidics setup. Proc Natl Acad Sci USA. 2017;114:4549–54.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Koch DL, Subramanian G. Collective hydrodynamics of swimming microorganisms: Living fluids. Annu Rev Fluid Mech. 2011;43:637–59.

    Article 

    Google Scholar 

  • Wioland H, Lushi E, Goldstein RE. Directed collective motion of bacteria under channel confinement. New J Phys. 2016;18:eaaz6153.

    Article 

    Google Scholar 

  • Petroff A, Libchaber A. Erratum: Hydrodynamics and collective behavior of the tethered bacterium Thiovulum majus. Proc Natl Acad Sci USA. 2016;111:5. E537-E545

    Google Scholar 

  • Kearns DB. A field guide to bacterial swarming motility. Nat Rev Microbiol. 2010;8:634–44.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bais HP, Fall R, Vivanco JM. Biocontrol of Bacillus subtilis against infection of arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol. 2004;134:307–19.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • De Souza R, Ambrosini A, Passaglia LMP. Plant growth-promoting bacteria as inoculants in agricultural soils. Genet Mol Biol. 2015;38:401–19.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Roy K, Ghosh D, DeBruyn JM, Dasgupta T, Wommack KE, Liang X, et al. Temporal dynamics of soil virus and bacterial populations in agricultural and early plant successional soils. Front Microbiol. 2020;11:1–13.

    Article 

    Google Scholar 

  • Liu Y, Patko D, Engelhardt IC, George TS, Stanley-Wall NP, Ladmiral V. et al. Whole plant-environment microscopy reveals how Bacillus subtilis utilises the soil pore space to colonise plant roots. Proc Natl Acad Sci USA. 2021;118:e2109176118.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Einstein A. On the motion of small particles suspended in liquids at rest required by the molecular-kinetic theory of heat. Ann Phys. 1905;17:549–60.

    CAS 
    Article 

    Google Scholar 

  • Shellard A, Mayor R. Rules of Collective Migration: From the wildebeest to the neural crest: Rules of neural crest migration. Philos Trans R Soc B Biol Sci. 2020;375:1–9.

    Article 

    Google Scholar 

  • Torney CJ, Lamont M, Debell L, Angohiatok RJ, Leclerc LM, Berdahl AM. Inferring the rules of social interaction in migrating caribou. Philos Trans R Soc B Biol Sci. 2018;373:20170385.

    Article 

    Google Scholar 

  • Ballerini MN, Cabibbo R, Candelier A, Cavagna E, Cisbani I, Giardina V, et al. Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study. Proc Natl Acad Sci USA. 2008;105:1232–37.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Cavagna A, Cimarelli A, Giardina I, Parisi G, Santagati R, Stefanini F, et al. Scale-free correlations in starling flocks. Proc Natl Acad Sci USA. 2010;107:11865–70.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Katz Y, Tunstrøm C, Ioannou CC, Huepe C, Couzin ID. Inferring the structure and dynamics of interactions in schooling fish. Proc Natl Acad Sci USA. 2011;108:18720–25.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Buhl JD, Sumpter JT, Couzin ID, Hale JJ, Despland E, Miller ER, et al. From disorder to order in marching locusts. Science 2006;312:1402–6.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Seeley TD, Visscher PK. Quorum Sensing during nest-site selection by honeybee swarms. Behav Ecol Sociobiol. 2004;56:594–601.

    Article 

    Google Scholar 

  • Zhang HP, Be’er A, Florin EL, Swinney HL. Collective motion and density fluctuations in bacterial colonies. Proc Natl Acad Sci USA. 2010;107:13626–30.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hughey LF, Hein AM, Strandburg-Peshkin A, Jensen FH. Challenges and solutions for studying collective animal behaviour in the wild. Philos Trans R Soc B Biol Sci. 2018;373:1–13.

    Article 

    Google Scholar 

  • Nadell CD, Xavier JB, Foster KR. The sociobiology of biofilms. FEMS Microbiol Rev. 2009;33:206–24.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Velicer GJ, Vos M. Sociobiology of the myxobacteria. Ann Rev Microbiol. 2009;63:599–623.

    CAS 
    Article 

    Google Scholar 

  • Branda SS, González-Pastor JE, Ben-Yehuda S, Losick R, Kolter R. Fruiting body formation by Bacillus subtilis. Proc Natl Acad Sci USA. 2001;98:11621–26.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Cordero OX, Wildschutte H, Kirkup B, Proehl S, Ngo L, Hussain F, et al. Antibiotic production and resistance. Sci Rep. 2012;337:1228–31.

    CAS 

    Google Scholar 

  • Muñoz-Dorado J, Marcos-Torres FJ, García-Bravo E, Moraleda-Muñoz A, Pérez J. Myxobacteria: Moving, killing, feeding, and surviving together. Front Microbiol. 2016;7:1–18.

    Article 

    Google Scholar 

  • Li C, Hurley A, Hu W, Warrick JW, Lozano GL, Ayuso JM, et al. Social motility of biofilm-like microcolonies in a gliding bacterium. Nat Commun. 2021;12:1–12.

    Article 
    CAS 

    Google Scholar 

  • Sokolov A, Aranson IS, Kessler JO, Goldstein RE. Concentration dependence of the collective dynamics of swimming bacteria. Phys Rev Lett. 2007;98:158102.

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Cisneros LH, Cortez R, Dombrowski C, Goldstein RE, Kessler JO. Fluid dynamics of self-propelled microorganisms, from individuals to concentrated populations. Exp Fluids. 2007;43:737–53.

    Article 

    Google Scholar 

  • Tuval I, Cisneros L, Dombrowski C, Wolgemuth CW, Kessler JO, Goldstein RE. Bacterial swimming and oxygen transport near contact lines. Proc Natl Acad Sci USA. 2005;102:2277–82.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Li G, Tam L, Tang JX. Amplified effect of brownian motion in bacterial near-surface swimming. Proc Natl Acad Sci USA. 2008;105:18355–59.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lushi E, Wioland H, Goldstein RE. Fluid flows created by swimming bacteria drive self-organization in confined suspensions. Proc Natl Acad Sci USA. 2014;111:9733–38.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ryan SD, Sokolov A, Berlyand L, Aranson IS. Correlation properties of collective motion in bacterial suspensions. New J Phys. 2013;15:105021.

    Article 

    Google Scholar 

  • Damton NC, Turner L, Rojevsky S, Berg HC. Dynamics of bacterial swarming. Biophys J. 2010;98:2082–90.

    Article 
    CAS 

    Google Scholar 

  • Ingham CJ, Jacob EB. Swarming and complex pattern formation in Paenibacillus vortex studied by imaging and tracking cells. BMC Microbiol. 2008;8:1–16.

    Article 
    CAS 

    Google Scholar 

  • Ariel G, Rabani A, Benisty S, Partridge JD, Harshey RM, Be’Er A. Swarming bacteria migrate by lévy walk. Nat Commun. 2015;6:8396.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hamze K, Autret S, Hinc K, Laalami S, Julkowska D, Briandet R, et al. Single-cell analysis in situ in a Bacillus subtilis swarming community identifies distinct spatially separated subpopulations differentially expressing Hag (Flagellin), including specialized swarmers. Microbiol. 2011;157:2456–69.

    CAS 
    Article 

    Google Scholar 

  • Ghelardi E, Salvetti S, Ceragioli M, Gueye SA, Celandroni F, Senesi S. Contribution of surfactin and swrA to flagellin expression, swimming, and surface motility in Bacillus subtilis. Appl Environ Microbiol. 2012;78:6540–44.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wilde A, Mullineaux CW. Light-controlled motility in prokaryotes and the problem of directional light perception. FEMS Microbiol Rev. 2017;41:900–22.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Zhang J, Luo Y, Poh CL. Blue light-directed cell migration, aggregation, and patterning. J Mol Biol. 2020;432:3137–48.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Tian T, Sun B, Shi H, Gao T, He Y, Li Y, et al. Sucrose triggers a novel signalling cascade promoting Bacillus subtilis rhizosphere colonization. ISME J 2021;15:2723–37.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Harshey RM, Partridge JD. Shelter in a swarm. J Mol Biol. 2015;427:3683–94.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Burdett IDJ, Kirkwood TBL, Whalley JB. Growth kinetics of individual Bacillus subtilis cells and correlation with nucleoid extension. J Bacteriol. 1986;167:219–30.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Sharpe ME, Hauser PM, Sharpe RG, Errington J. Bacillus subtilis cell cycle as studied by fluorescence microscopy: Constancy of cell length at initiation of DNA replication and evidence for active nucleoid partitioning. J Bacteriol. 1998;180:547–55.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rousk J, Bååth E. Growth of saprotrophic fungi and bacteria in soil. FEMS Microbiol Ecol. 2011;78:17–30.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bennett RA, Lynch JM. Bacterial growth and development in the rhizosphere of gnotobiotic cereal plants. Microbiol. 1981;125:95–102.

    Article 

    Google Scholar 

  • Felici C, Vettori L, Giraldi E, Forino LMC, Toffanin A, Tagliasacchi AM, et al. Single and co-inoculation of Bacillus subtilis and Azospirillum brasilense on Lycopersicon Esculentum: Effects on plant growth and rhizosphere microbial community. Appl Soil Ecol. 2008;40:260–70.

    Article 

    Google Scholar 

  • Arkhipova TN, Galimsyanova NF, Kuzmina LY, Vysotskaya LB, Sidorova LV, Gabbasova IM, et al. Effect of seed bacterization with plant growth-promoting bacteria on wheat productivity and phosphorus mobility in the rhizosphere. Plant Soil Environ. 2019;65:313–19.

    CAS 
    Article 

    Google Scholar 

  • Marschner P, Crowley D, Rengel Z. Rhizosphere interactions between microorganisms and plants govern iron and phosphorus acquisition along the root axis – model and research methods. Soil Biol Biochem. 2011;43:883–94.

    CAS 
    Article 

    Google Scholar 

  • Lagos ML, Maruyama F, Nannipieri P, Mora ML, Jorquera MA. Current Overview on the study of bacteria in the rhizosphere by modern molecular techniques: A Mini-Review. J Soil Sci Plant Nutr. 2015;15:504–23.

    Google Scholar 

  • Gerwig J, Kiley TB, Gunka K, Stanley-Wall N, Stülke J. The protein tyrosine kinases epsB and ptkA differentially affect biofilm formation in Bacillus Subtilis. Microbiol. 2014;160:682–91.

    CAS 
    Article 

    Google Scholar 

  • Shoesmith JG. The measurement of bacterial motility. J Gen Microbiol. 1960;22:528–35.

    Article 

    Google Scholar 

  • Schneider WR, Doetsch RN. Effect of viscosity on bacterial motility. J Bacteriol. 1974;117:696–701.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kaiser GE, Doetsch RN. Enhanced translational motion of Leptospira in viscous environments. Nature 1975;255:656–57.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ryan SD, Haines BM, Berlyand L, Ziebert F, Aranson IS. Viscosity of bacterial suspensions: Hydrodynamic interactions and self-induced noise. Phys Rev E Stat Nonlin Soft Matter Phys. 2011;E83:050904.

    Article 
    CAS 

    Google Scholar 

  • López HM, Gachelin J, Douarche C, Auradou H, Clément E. Turning bacteria suspensions into superfluids. Phys Rev Lett. 2015;115:028301.

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Butler MT, Wang Q, Harshey RM. Cell density and mobility protect swarming bacteria against antibiotics. Proc Natl Acad Sci USA. 2010;107:3776–81.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Erktan A, Or D, Scheu S. The physical structure of soil: Determinant and consequence of trophic interactions. Soil Biol Biochem. 2020;148:107876.

    CAS 
    Article 

    Google Scholar 

  • Rønn R, Thomsen IK, Jensen B. Naked amoebae, flagellates and nematodes in soil of different texture. Eur J Soil Biol. 1995;31:135–41.

    Google Scholar 

  • Downie H, Holden N, Otten W, Spiers AJ, Valentine TA, Dupuy LX. Transparent soil for imaging the rhizosphere. PLoS ONE. 2012;7:1–6.

    Article 
    CAS 

    Google Scholar 

  • Mills AL. Keeping in Touch: Microbial life on soil particle surfaces. Adv Agron. 2003;78:1–43.

    Article 

    Google Scholar 

  • Downie HF, Valentine TA, Otten W, Spiers AJ, Dupuy LX. Transparent soil microcosms allow 3D spatial quantification of soil microbiological processes in vivo. Plant Signal Behav. 2014;9:e970421.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • O’Callaghan FE, Braga RA, Neilson R, MacFarlane SA, Dupuy LX. New live screening of plant-nematode interactions in the rhizosphere. Sci Rep. 2018;8:1–17.

    Article 
    CAS 

    Google Scholar 

  • Sharma K, Palatinszky M, Nikolov G, Berry D, Shank EA. Transparent soil microcosms for live-cell imaging and non-destructive stable isotope probing of soil microorganisms. ELife 2020;9:1–28.

    Google Scholar 

  • Bickel S, Or D. Soil bacterial diversity mediated by microscale aqueous-phase processes across biomes. Nat Commun. 2020;11:1–9.

    Article 
    CAS 

    Google Scholar 

  • Farré M, Sanchís J, Barceló D. Analysis and assessment of the occurrence, the fate and the behavior of nanomaterials in the environment. Trends Anal Chem. 2011;30:517–27.

    Article 
    CAS 

    Google Scholar 

  • Verhamme DT, Kiley TB, Stanley-Wall NR. DegU co-ordinates multicellular behaviour exhibited by Bacillus subtilis. Mol Microbiol. 2007;65:554–68.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Konkol MA, Blair KM, Kearns DB. Plasmid-encoded comi inhibits competence in the ancestral 3610 strain of Bacillus subtilis. J Bacteriol. 2013;195:4085–93.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Stanley NR, Lazazzera BA. Defining the genetic differences between wild and domestic strains of Bacillus subtilis that affect poly-γ-DL-glutamic acid production and biofilm formation. Mol Microbiol. 2005;57:1143–58.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2020. URL https://www.R-project.org/.

  • Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:676–82.

    CAS 
    PubMed 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Charting the landscape at MIT

    Widespread increasing vegetation sensitivity to soil moisture