in

Nutrient supply controls the linkage between species abundance and ecological interactions in marine bacterial communities

  • 1.

    Sogin, M. L. et al. Microbial diversity in the deep sea and the underexplored “rare biosphere”. P Natl Acad. Sci. USA 103, 12115–12120 (2006).

    CAS 
    ADS 

    Google Scholar 

  • 2.

    Pedros-Alio, C. The rare bacterial biosphere. Ann. Rev. Mar. Sci. 4, 449–466 (2012).

    PubMed 

    Google Scholar 

  • 3.

    Lynch, M. D. J. & Neufeld, J. D. Ecology and exploration of the rare biosphere. Nat. Rev. Microbiol. 13, 217–229 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 4.

    Campbell, B. J., Yu, L. Y., Heidelberg, J. F. & Kirchman, D. L. Activity of abundant and rare bacteria in a coastal ocean. P Natl Acad. Sci. USA 108, 12776–12781 (2011).

    CAS 
    ADS 

    Google Scholar 

  • 5.

    Gobet, A. et al. Diversity and dynamics of rare and of resident bacterial populations in coastal sands. Isme J. 6, 542–553 (2012).

    PubMed 

    Google Scholar 

  • 6.

    Wilhelm, L. et al. Rare but active taxa contribute to community dynamics of benthic biofilms in glacier-fed streams. Environ. Microbiol. 16, 2514–2524 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 7.

    Lawson, C. E. et al. Rare taxa have potential to make metabolic contributions in enhanced biological phosphorus removal ecosystems. Environ. Microbiol. 17, 4979–4993 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 8.

    Newton, R. J. & Shade, A. Lifestyles of rarity: understanding heterotrophic strategies to inform the ecology of the microbial rare biosphere. Aquat. Micro. Ecol. 78, 51–63 (2016).

    Google Scholar 

  • 9.

    Lauro, F. M. et al. The genomic basis of trophic strategy in marine bacteria. P Natl Acad. Sci. USA 106, 15527–15533 (2009).

    CAS 
    ADS 

    Google Scholar 

  • 10.

    Klappenbach, J. A., Dunbar, J. M. & Schmidt, T. M. RRNA operon copy number reflects ecological strategies of bacteria. Appl Environ. Micro. 66, 1328–1333 (2000).

    CAS 
    ADS 

    Google Scholar 

  • 11.

    Roller, B. R. K., Stoddard, S. F. & Schmidt, T. M. Exploiting rRNA operon copy number to investigate bacterial reproductive strategies. Nat. Microbiol. 1, 16160 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 12.

    Polz, M. F. & Cordero, O. X. Bacterial evolution: genomics of metabolic trade-offs. Nat. Microbiol. 1, 16181 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 13.

    Giovannoni, S. J. SAR11 bacteria: the most abundant plankton in the oceans. Ann. Rev. Mar. Sci. 9, 231–255 (2017).

    PubMed 

    Google Scholar 

  • 14.

    Elser, J. J. et al. Biological stoichiometry from genes to ecosystems. Ecol. Lett. 3, 540–550 (2000).

    Google Scholar 

  • 15.

    Hessen, D. O., Elser, J. J., Sterner, R. W. & Urabe, J. Ecological stoichiometry: an elementary approach using basic principles. Limnol. Oceanogr. 58, 2219–2236 (2013).

    CAS 
    ADS 

    Google Scholar 

  • 16.

    Acharya, K., Kyle, M. & Elser, J. J. Biological stoichiometry of Daphnia growth: an ecophysiological test of the growth rate hypothesis. Limnol. Oceanogr. 49, 656–665 (2004).

    CAS 
    ADS 

    Google Scholar 

  • 17.

    Hendrixson, H. A., Sterner, R. W. & Kay, A. D. Elemental stoichiometry of freshwater fishes in relation to phylogeny, allometry and ecology. J. Fish. Biol. 70, 121–140 (2007).

    Google Scholar 

  • 18.

    Matzek, V. & Vitousek, P. M. N: P stoichiometry and protein: RNA ratios in vascular plants: an evaluation of the growth-rate hypothesis. Ecol. Lett. 12, 765–771 (2009).

    PubMed 

    Google Scholar 

  • 19.

    Ghoul, M. & Mitri, S. The ecology and evolution of microbial competition. Trends Microbiol 24, 833–845 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 20.

    Laland, K., Matthews, B. & Feldman, M. W. An introduction to niche construction theory. Evol. Ecol. 30, 191–202 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Ratzke, C., Barrere, J. & Gore, J. Strength of species interactions determines biodiversity and stability in microbial communities. Nat. Ecol. Evol. 4, 376–383 (2020).

    PubMed 

    Google Scholar 

  • 22.

    Větrovský, T. & Baldrian, P. The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. Plos ONE 8, e57923 (2013).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 23.

    Molenaar, D., van Berlo, R., de Ridder, D. & Teusink, B. Shifts in growth strategies reflect tradeoffs in cellular economics. Mol. Syst. Biol. 5, 323–323 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    Nemergut, D. R. et al. Decreases in average bacterial community rRNA operon copy number during succession. Isme J. 10, 1147–1156 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 25.

    Wu, L. W. et al. Microbial functional trait of rRNA operon copy numbers increases with organic levels in anaerobic digesters. Isme J. 11, 2874–2878 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 26.

    Wu, L. W. et al. Global diversity and biogeography of bacterial communities in wastewater treatment plants. Nat. Microbiol. 4, 2579–2579 (2019).

    PubMed 

    Google Scholar 

  • 27.

    Stoddard, S. F., Smith, B. J., Hein, R., Roller, B. R. K. & Schmidt, T. M. rrnDB: improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development. Nucleic Acids Res. 43, D593–D598 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 28.

    Dai, T. et al. Dynamics of coastal bacterial community average ribosomal RNA operon copy number reflect its response and sensitivity to ammonium and phosphate. Environ. Pollut. 260, 113971 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 29.

    Zhou, J., Deng, Y., Luo, F., He, Z. & Yang, Y. Phylogenetic molecular ecological network of soil microbial communities in response to elevated CO2. Mbio 2, e00122–00111 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 30.

    Vellend, M. Conceptual Synthesis in Community Ecology. Q Rev. Biol. 85, 183–206 (2010).

    PubMed 

    Google Scholar 

  • 31.

    Frey, E. Evolutionary game theory: Theoretical concepts and applications to microbial communities. Phys. A 389, 4265–4298 (2010).

    MathSciNet 
    CAS 
    MATH 

    Google Scholar 

  • 32.

    Boeuf, D. et al. Biological composition and microbial dynamics of sinking particulate organic matter at abyssal depths in the oligotrophic open ocean. P Natl Acad. Sci. USA 116, 11824 (2019).

    CAS 

    Google Scholar 

  • 33.

    Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551, 457–463 (2017).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 34.

    Gralka, M., Szabo, R., Stocker, R. & Cordero, O. X. Trophic Interactions and the Drivers of Microbial Community Assembly. Curr. Biol. 30, R1176–R1188 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 35.

    Gorter, F. A., Manhart, M. & Ackermann, M. Understanding the evolution of interspecies interactions in microbial communities. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20190256 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 36.

    Gandhi, S. R., Korolev, K. S. & Gore, J. Cooperation mitigates diversity loss in a spatially expanding microbial population. P Natl Acad. Sci. USA 116, 23582–23587 (2019).

    CAS 

    Google Scholar 

  • 37.

    Calatayud, J. et al. Positive associations among rare species and their persistence in ecological assemblages. Nat. Ecol. Evol. 4, 40–45 (2020).

    PubMed 

    Google Scholar 

  • 38.

    Furman, O. et al. Stochasticity constrained by deterministic effects of diet and age drive rumen microbiome assembly dynamics. Nat. Commun. 11, 1904 (2020).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 39.

    Tardy, V. et al. Stability of soil microbial structure and activity depends on microbial diversity. Env. Microbiol. Rep. 6, 173–183 (2014).

    CAS 

    Google Scholar 

  • 40.

    Coyte, K. Z., Schluter, J. & Foster, K. R. The ecology of the microbiome: networks, competition, and stability. Science 350, 663–666 (2015).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 41.

    Blanchet, F. G., Cazelles, K. & Gravel, D. Co-occurrence is not evidence of ecological interactions. Ecol. Lett. 23, 1050–1063 (2020).

    PubMed 

    Google Scholar 

  • 42.

    Blasche, S. et al. Metabolic cooperation and spatiotemporal niche partitioning in a kefir microbial community. Nat. Microbiol. 6, 196–208 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 43.

    Chatzinikolaou, E. et al. Spatio-temporal benthic biodiversity patterns and pollution pressure in three Mediterranean touristic ports. Sci. Total Environ. 624, 648–660 (2018).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 44.

    Filippini, G. et al. Sediment bacterial communities associated with environmental factors in Intermittently Closed and Open Lakes and Lagoons (ICOLLs). Sci. Total Environ. 693, 133462 (2019).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 45.

    Pesant, S. et al. Open science resources for the discovery and analysis of Tara Oceans data. Sci. Data 2, 150023 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 46.

    Huse, S. M. et al. Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing. Plos Genet. 4, e1000255 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 47.

    Salas-González, I. et al. Coordination between microbiota and root endodermis supports plant mineral nutrient homeostasis. Science 371, eabd0695 (2021).

    PubMed 

    Google Scholar 

  • 48.

    Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. P Natl Acad. Sci. USA 108, 4516 (2011).

    CAS 
    ADS 

    Google Scholar 

  • 49.

    Wear, E. K., Wilbanks, E. G., Nelson, C. E. & Carlson, C. A. Primer selection impacts specific population abundances but not community dynamics in a monthly time-series 16S rRNA gene amplicon analysis of coastal marine bacterioplankton. Environ. Microbiol. 20, 2709–2726 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 50.

    Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 51.

    Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. Phylogenies and community ecology. Annu Rev. Ecol. Syst. 33, 475–505 (2002).

    Google Scholar 

  • 52.

    Wu, L. W. et al. Long-term successional dynamics of microbial association networks in anaerobic digestion processes. Water Res. 104, 1–10 (2016).

    PubMed 

    Google Scholar 

  • 53.

    Galand, P. E., Casamayor, E. O., Kirchman, D. L. & Lovejoy, C. Ecology of the rare microbial biosphere of the Arctic Ocean. P Natl Acad. Sci. USA 106, 22427–22432 (2009).

    CAS 
    ADS 

    Google Scholar 

  • 54.

    Ju, F. & Zhang, T. Bacterial assembly and temporal dynamics in activated sludge of a full-scale municipal wastewater treatment plant. Isme J. 9, 683–695 (2015).

    CAS 
    PubMed 
    ADS 

    Google Scholar 


  • Source: Ecology - nature.com

    Understanding air pollution from space

    A dirt cheap solution? Common clay materials may help curb methane emissions