Sogin, M. L. et al. Microbial diversity in the deep sea and the underexplored “rare biosphere”. P Natl Acad. Sci. USA 103, 12115–12120 (2006).
Google Scholar
Pedros-Alio, C. The rare bacterial biosphere. Ann. Rev. Mar. Sci. 4, 449–466 (2012).
Google Scholar
Lynch, M. D. J. & Neufeld, J. D. Ecology and exploration of the rare biosphere. Nat. Rev. Microbiol. 13, 217–229 (2015).
Google Scholar
Campbell, B. J., Yu, L. Y., Heidelberg, J. F. & Kirchman, D. L. Activity of abundant and rare bacteria in a coastal ocean. P Natl Acad. Sci. USA 108, 12776–12781 (2011).
Google Scholar
Gobet, A. et al. Diversity and dynamics of rare and of resident bacterial populations in coastal sands. Isme J. 6, 542–553 (2012).
Google Scholar
Wilhelm, L. et al. Rare but active taxa contribute to community dynamics of benthic biofilms in glacier-fed streams. Environ. Microbiol. 16, 2514–2524 (2014).
Google Scholar
Lawson, C. E. et al. Rare taxa have potential to make metabolic contributions in enhanced biological phosphorus removal ecosystems. Environ. Microbiol. 17, 4979–4993 (2015).
Google Scholar
Newton, R. J. & Shade, A. Lifestyles of rarity: understanding heterotrophic strategies to inform the ecology of the microbial rare biosphere. Aquat. Micro. Ecol. 78, 51–63 (2016).
Lauro, F. M. et al. The genomic basis of trophic strategy in marine bacteria. P Natl Acad. Sci. USA 106, 15527–15533 (2009).
Google Scholar
Klappenbach, J. A., Dunbar, J. M. & Schmidt, T. M. RRNA operon copy number reflects ecological strategies of bacteria. Appl Environ. Micro. 66, 1328–1333 (2000).
Google Scholar
Roller, B. R. K., Stoddard, S. F. & Schmidt, T. M. Exploiting rRNA operon copy number to investigate bacterial reproductive strategies. Nat. Microbiol. 1, 16160 (2016).
Google Scholar
Polz, M. F. & Cordero, O. X. Bacterial evolution: genomics of metabolic trade-offs. Nat. Microbiol. 1, 16181 (2016).
Google Scholar
Giovannoni, S. J. SAR11 bacteria: the most abundant plankton in the oceans. Ann. Rev. Mar. Sci. 9, 231–255 (2017).
Google Scholar
Elser, J. J. et al. Biological stoichiometry from genes to ecosystems. Ecol. Lett. 3, 540–550 (2000).
Hessen, D. O., Elser, J. J., Sterner, R. W. & Urabe, J. Ecological stoichiometry: an elementary approach using basic principles. Limnol. Oceanogr. 58, 2219–2236 (2013).
Google Scholar
Acharya, K., Kyle, M. & Elser, J. J. Biological stoichiometry of Daphnia growth: an ecophysiological test of the growth rate hypothesis. Limnol. Oceanogr. 49, 656–665 (2004).
Google Scholar
Hendrixson, H. A., Sterner, R. W. & Kay, A. D. Elemental stoichiometry of freshwater fishes in relation to phylogeny, allometry and ecology. J. Fish. Biol. 70, 121–140 (2007).
Matzek, V. & Vitousek, P. M. N: P stoichiometry and protein: RNA ratios in vascular plants: an evaluation of the growth-rate hypothesis. Ecol. Lett. 12, 765–771 (2009).
Google Scholar
Ghoul, M. & Mitri, S. The ecology and evolution of microbial competition. Trends Microbiol 24, 833–845 (2016).
Google Scholar
Laland, K., Matthews, B. & Feldman, M. W. An introduction to niche construction theory. Evol. Ecol. 30, 191–202 (2016).
Google Scholar
Ratzke, C., Barrere, J. & Gore, J. Strength of species interactions determines biodiversity and stability in microbial communities. Nat. Ecol. Evol. 4, 376–383 (2020).
Google Scholar
Větrovský, T. & Baldrian, P. The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. Plos ONE 8, e57923 (2013).
Google Scholar
Molenaar, D., van Berlo, R., de Ridder, D. & Teusink, B. Shifts in growth strategies reflect tradeoffs in cellular economics. Mol. Syst. Biol. 5, 323–323 (2009).
Google Scholar
Nemergut, D. R. et al. Decreases in average bacterial community rRNA operon copy number during succession. Isme J. 10, 1147–1156 (2016).
Google Scholar
Wu, L. W. et al. Microbial functional trait of rRNA operon copy numbers increases with organic levels in anaerobic digesters. Isme J. 11, 2874–2878 (2017).
Google Scholar
Wu, L. W. et al. Global diversity and biogeography of bacterial communities in wastewater treatment plants. Nat. Microbiol. 4, 2579–2579 (2019).
Google Scholar
Stoddard, S. F., Smith, B. J., Hein, R., Roller, B. R. K. & Schmidt, T. M. rrnDB: improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development. Nucleic Acids Res. 43, D593–D598 (2015).
Google Scholar
Dai, T. et al. Dynamics of coastal bacterial community average ribosomal RNA operon copy number reflect its response and sensitivity to ammonium and phosphate. Environ. Pollut. 260, 113971 (2020).
Google Scholar
Zhou, J., Deng, Y., Luo, F., He, Z. & Yang, Y. Phylogenetic molecular ecological network of soil microbial communities in response to elevated CO2. Mbio 2, e00122–00111 (2011).
Google Scholar
Vellend, M. Conceptual Synthesis in Community Ecology. Q Rev. Biol. 85, 183–206 (2010).
Google Scholar
Frey, E. Evolutionary game theory: Theoretical concepts and applications to microbial communities. Phys. A 389, 4265–4298 (2010).
Google Scholar
Boeuf, D. et al. Biological composition and microbial dynamics of sinking particulate organic matter at abyssal depths in the oligotrophic open ocean. P Natl Acad. Sci. USA 116, 11824 (2019).
Google Scholar
Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551, 457–463 (2017).
Google Scholar
Gralka, M., Szabo, R., Stocker, R. & Cordero, O. X. Trophic Interactions and the Drivers of Microbial Community Assembly. Curr. Biol. 30, R1176–R1188 (2020).
Google Scholar
Gorter, F. A., Manhart, M. & Ackermann, M. Understanding the evolution of interspecies interactions in microbial communities. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20190256 (2020).
Google Scholar
Gandhi, S. R., Korolev, K. S. & Gore, J. Cooperation mitigates diversity loss in a spatially expanding microbial population. P Natl Acad. Sci. USA 116, 23582–23587 (2019).
Google Scholar
Calatayud, J. et al. Positive associations among rare species and their persistence in ecological assemblages. Nat. Ecol. Evol. 4, 40–45 (2020).
Google Scholar
Furman, O. et al. Stochasticity constrained by deterministic effects of diet and age drive rumen microbiome assembly dynamics. Nat. Commun. 11, 1904 (2020).
Google Scholar
Tardy, V. et al. Stability of soil microbial structure and activity depends on microbial diversity. Env. Microbiol. Rep. 6, 173–183 (2014).
Google Scholar
Coyte, K. Z., Schluter, J. & Foster, K. R. The ecology of the microbiome: networks, competition, and stability. Science 350, 663–666 (2015).
Google Scholar
Blanchet, F. G., Cazelles, K. & Gravel, D. Co-occurrence is not evidence of ecological interactions. Ecol. Lett. 23, 1050–1063 (2020).
Google Scholar
Blasche, S. et al. Metabolic cooperation and spatiotemporal niche partitioning in a kefir microbial community. Nat. Microbiol. 6, 196–208 (2021).
Google Scholar
Chatzinikolaou, E. et al. Spatio-temporal benthic biodiversity patterns and pollution pressure in three Mediterranean touristic ports. Sci. Total Environ. 624, 648–660 (2018).
Google Scholar
Filippini, G. et al. Sediment bacterial communities associated with environmental factors in Intermittently Closed and Open Lakes and Lagoons (ICOLLs). Sci. Total Environ. 693, 133462 (2019).
Google Scholar
Pesant, S. et al. Open science resources for the discovery and analysis of Tara Oceans data. Sci. Data 2, 150023 (2015).
Google Scholar
Huse, S. M. et al. Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing. Plos Genet. 4, e1000255 (2008).
Google Scholar
Salas-González, I. et al. Coordination between microbiota and root endodermis supports plant mineral nutrient homeostasis. Science 371, eabd0695 (2021).
Google Scholar
Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. P Natl Acad. Sci. USA 108, 4516 (2011).
Google Scholar
Wear, E. K., Wilbanks, E. G., Nelson, C. E. & Carlson, C. A. Primer selection impacts specific population abundances but not community dynamics in a monthly time-series 16S rRNA gene amplicon analysis of coastal marine bacterioplankton. Environ. Microbiol. 20, 2709–2726 (2018).
Google Scholar
Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).
Google Scholar
Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. Phylogenies and community ecology. Annu Rev. Ecol. Syst. 33, 475–505 (2002).
Wu, L. W. et al. Long-term successional dynamics of microbial association networks in anaerobic digestion processes. Water Res. 104, 1–10 (2016).
Google Scholar
Galand, P. E., Casamayor, E. O., Kirchman, D. L. & Lovejoy, C. Ecology of the rare microbial biosphere of the Arctic Ocean. P Natl Acad. Sci. USA 106, 22427–22432 (2009).
Google Scholar
Ju, F. & Zhang, T. Bacterial assembly and temporal dynamics in activated sludge of a full-scale municipal wastewater treatment plant. Isme J. 9, 683–695 (2015).
Google Scholar
Source: Ecology - nature.com