in

Old and ancient trees are life history lottery winners and vital evolutionary resources for long-term adaptive capacity

  • 1.

    Blicharska, M. & Mikusiński, G. Incorporating social and cultural significance of large old trees in conservation policy. Conserv. Biol. 28, 1558–1567 (2014).

    PubMed 

    Google Scholar 

  • 2.

    Lindenmayer, D. B. & Laurance, W. F. The ecology, distribution, conservation and management of large old trees. Biol. Rev. Camb. Phil. Soc. 92, 1434–1458 (2017).

    Google Scholar 

  • 3.

    Munné-Bosch, S. Limits to tree growth and longevity. Trends Plant Sci. 23, 985–993 (2018).

    PubMed 

    Google Scholar 

  • 4.

    Lindenmayer, D. B. Conserving large old trees as small natural features. Biol. Conserv. 211, 51–59 (2017).

    Google Scholar 

  • 5.

    Lutz, J. A. et al. Global importance of large-diameter trees. Glob. Ecol. Biogeogr. 27, 849–864 (2018).

    Google Scholar 

  • 6.

    Slik, J. W. F. et al. Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics: large trees and tropical forest biomass. Glob. Ecol. Biogeogr. 22, 1261–1271 (2013).

    Google Scholar 

  • 7.

    McMahon, S. M., Arellano, G. & Davies, S. J. The importance and challenges of detecting changes in forest mortality rates. Ecosphere 10, e02615 (2019).

    Google Scholar 

  • 8.

    Vieira, S. et al. Slow growth rates of Amazonian trees: consequences for carbon cycling. Proc. Natl Acad. Sci. USA 102, 18502–18507 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 9.

    Martınez-Ramos, M. & Alvarez-Buylla, E. R. How old are tropical rain forest trees? Trends Plant Sci. 3, 400–405 (1998).

    Google Scholar 

  • 10.

    Schöngart, J., Bräuning, A., Barbosa, A. C. M. C., Lisi, C. S. & de Oliveira, J. M. in Dendroecology: Tree-Ring Analyses Applied to Ecological Studies (eds Amoroso, M. M. et al.) 35–73 (Springer, 2017).

  • 11.

    Brienen, R. J. W. & Zuidema, P. A. Lifetime growth patterns and ages of Bolivian rain forest trees obtained by tree ring analysis. J. Ecol. 94, 481–493 (2006).

    Google Scholar 

  • 12.

    Piovesan, G. & Biondi, F. On tree longevity. New Phytol. 231, 1318–1337 (2021).

    PubMed 

    Google Scholar 

  • 13.

    Esquivel-Muelbert, A. et al. Tree mode of death and mortality risk factors across Amazon forests. Nat. Commun. 11, 5515 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 14.

    Condit, R., Hubbell, S. P. & Foster, R. B. Mortality rates of 205 neotropical tree and shrub species and the impact of a severe drought. Ecol. Monogr. 65, 419–439 (1995).

    Google Scholar 

  • 15.

    Acker, S. A. et al. Recent tree mortality and recruitment in mature and old-growth forests in western Washington. Ecol. Manage. 336, 109–118 (2015).

    Google Scholar 

  • 16.

    Thomas, R. Q., Kellner, J. R., Clark, D. B. & Peart, D. R. Low mortality in tall tropical trees. Ecology 94, 920–929 (2013).

    Google Scholar 

  • 17.

    Stephenson, N. L. & Mantgem, P. J. Forest turnover rates follow global and regional patterns of productivity. Ecol. Lett. 8, 524–531 (2005).

    PubMed 

    Google Scholar 

  • 18.

    Drobyshev, I. et al. Lifespan and mortality of old oaks—combining empirical and modelling approaches to support their management in Southern Sweden. Ann. Sci. 65, 401–401 (2008).

    Google Scholar 

  • 19.

    Richardson, S. J. et al. Large-tree growth and mortality rates in forests of the central North Island, New Zealand. N. Z. J. Ecol. 33, 208–215 (2009).

    Google Scholar 

  • 20.

    Chambers, J. Q., Higuchi, N. & Schimel, J. P. Ancient trees in Amazonia. Nature 391, 135–136 (1998).

    CAS 

    Google Scholar 

  • 21.

    Laurance, W. F., Nascimento, H. E. M., Laurance, S. G., Condit, R., D’Angelo, S. & Andrade, A. Inferred longevity of Amazonian rainforest trees based on a long-term demographic study. Ecol. Manage. 190, 131–143 (2004).

    Google Scholar 

  • 22.

    Fichtler, E., Clark, D. A. & Worbes, M. Age and long-term growth of trees in an old-growth tropical rain forest, based on analyses of tree rings and C-14. Biotropica 35, 306–317 (2003).

    Google Scholar 

  • 23.

    Foster, D. R. Land-use history (1730–1990) and vegetation dynamics in central New England, USA. J. Ecol. 80, 753–771 (1992).

    Google Scholar 

  • 24.

    Senf, C., Buras, A., Zang, C. S., Rammig, A. & Seidl, R. Excess forest mortality is consistently linked to drought across Europe. Nat. Commun. 11, 6200 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 25.

    van Mantgem, P. J. et al. Widespread increase of tree mortality rates in the western United States. Science 323, 521–524 (2009).

    PubMed 

    Google Scholar 

  • 26.

    Qiu, T. et al. Is there tree senescence? The fecundity evidence. Proc. Natl Acad. Sci. USA 118, https://doi.org/10.1073/pnas.2106130118 (2021).

  • 27.

    Barrett, S. C. H. Influences of clonality on plant sexual reproduction. Proc. Natl Acad. Sci. USA 112, 8859–8866 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Thomas, H. Senescence, ageing and death of the whole plant. New Phytol. 197, 696–711 (2013).

    PubMed 

    Google Scholar 

  • 29.

    Munné-Bosch, S. Long-lived trees are not immortal. Trends Plant Sci. 25, 846–849 (2020).

    PubMed 

    Google Scholar 

  • 30.

    Sillett, S. C. et al. Comparative development of the four tallest conifer species. Ecol. Manage. 480, 118688 (2021).

    Google Scholar 

  • 31.

    Koch, G. W., Sillett, S. C., Jennings, G. M. & Davis, S. D. The limits to tree height. Nature 428, 851–854 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • 32.

    Thomas, H. Ageing in plants. Mech. Ageing Dev. 123, 747–753 (2002).

    PubMed 

    Google Scholar 

  • 33.

    Dahlgren, J. P., García, M. B. & Ehrlén, J. Nonlinear relationships between vital rates and state variables in demographic models. Ecology 92, 1181–1187 (2011).

    PubMed 

    Google Scholar 

  • 34.

    Klimešová, J., Malíková, L., Rosenthal, J. & Šmilauer, P. Potential bud bank responses to apical meristem damage and environmental variables: matching or complementing axillary meristems? PLoS ONE 9, e88093 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 35.

    Plomion, C. et al. Oak genome reveals facets of long lifespan. Nat. Plants 4, 440–452 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 36.

    Hanlon, V. C. T., Otto, S. P. & Aitken, S. N. Somatic mutations substantially increase the per-generation mutation rate in the conifer Picea sitchensis. Evol. Lett. 1, 95 (2019).

    Google Scholar 

  • 37.

    Amaral, J. et al. Advances and promises of epigenetics for forest trees. Trees Livelihoods 11, 976 (2020).

    Google Scholar 

  • 38.

    Carbó, M. et al. in Epigenetics in Plants of Agronomic Importance: Fundamentals and Applications: Transcriptional Regulation and Chromatin Remodelling in Plants (eds Alvarez-Venegas, R. et al.) 381–403 (Springer, 2019).

  • 39.

    Sow, M. D. et al. in Advances in Botanical Research (eds Mirouze, M. et al.) Vol. 88, 387–453 (Academic Press, 2018).

  • 40.

    Das, A., Battles, J., Stephenson, N. L. & van Mantgem, P. J. The contribution of competition to tree mortality in old-growth coniferous forests. Ecol. Manage. 261, 1203–1213 (2011).

    Google Scholar 

  • 41.

    Etzold, S. et al. One century of forest monitoring data in Switzerland reveals species-and site-specific trends of climate-induced tree mortality. Front. Plant Sci. 10, https://doi.org/10.3389/fpls.2019.00307 (2019).

  • 42.

    McNellis, B. E., Smith, A. M. S., Hudak, A. T. & Strand, E. K. Tree mortality in western U.S. forests forecasted using forest inventory and Random Forest classification. Ecosphere 12, https://doi.org/10.1002/ecs2.3419 (2021).

  • 43.

    Piovesan, G. et al. Lessons from the wild: slow but increasing long-term growth allows for maximum longevity in European beech. Ecology 100, e02737 (2019).

    PubMed 

    Google Scholar 

  • 44.

    Piovesan, G. et al. Radiocarbon dating of Aspromonte sessile oaks reveals the oldest dated temperate flowering tree in the world. Ecology 101, e03179 (2020).

    PubMed 

    Google Scholar 

  • 45.

    Körner, C. A matter of tree longevity. Science 355, 130–131 (2017).

    PubMed 

    Google Scholar 

  • 46.

    Poulter, B. et al. The global forest age dataset and its uncertainties (GFADv1.1). PANGAEA https://doi.org/10.1594/PANGAEA.889943 (2019).

  • 47.

    Di Filippo, A., Biondi, F., Piovesan, G. & Ziaco, E. Tree ring-based metrics for assessing old-growth forest naturalness. J. Appl. Ecol. 54, 737–749 (2017).

    Google Scholar 

  • 48.

    Caetano-Andrade, V. L. et al. Tropical trees as time capsules of anthropogenic activity. Trends Plant Sci. 25, 369–380 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 49.

    Roskilly, B., Keeling, E., Hood, S., Giuggiola, A. & Sala, A. Conflicting functional effects of xylem pit structure relate to the growth–longevity trade-off in a conifer species. Proc. Natl Acad. Sci. USA 116, 15282–15287 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 50.

    Kingman, J. F. C. The coalescent. Stoch. Process. Appl. 13, 235–248 (1982).

    Google Scholar 

  • 51.

    Joly, S., McLenachan, P. A. & Lockhart, P. J. A statistical approach for distinguishing hybridization and incomplete lineage sorting. Am. Nat. 174, E54–E70 (2009).

    PubMed 

    Google Scholar 

  • 52.

    Leaché, A. D., Harris, R. B., Rannala, B. & Yang, Z. The influence of gene flow on species tree estimation: a simulation study. Syst. Biol. 63, 17–30 (2014).

    PubMed 

    Google Scholar 

  • 53.

    Yu, Y., Dong, J., Liu, K. J. & Nakhleh, L. Maximum likelihood inference of reticulate evolutionary histories. Proc. Natl Acad. Sci. USA 111, 16448–16453 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 54.

    Zhou, Y. et al. Importance of incomplete lineage sorting and introgression in the origin of shared genetic variation between two closely related pines with overlapping distributions. Heredity 118, 211–220 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 55.

    Petit, R. J. & Hampe, A. Some evolutionary consequences of being a tree. Annu. Rev. Ecol. Evol. Syst. 37, 187–214 (2006).

    Google Scholar 

  • 56.

    Tejo, C. F. & Fontúrbel, F. E. A vertical forest within the forest: millenary trees from the Valdivian rainforest as biodiversity hubs. Ecology 100, e02584 (2019).

    PubMed 

    Google Scholar 

  • 57.

    Stephenson, N. L. et al. Rate of tree carbon accumulation increases continuously with tree size. Nature 507, 90–93 (2014).

    CAS 
    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    Richard Leakey (1944–2022)

    Preparing global online learners for the clean energy transition