in

Organic and in-organic fertilizers effects on the performance of tomato (Solanum lycopersicum) and cucumber (Cucumis sativus) grown on soilless medium

[adace-ad id="91168"]

Growth conditions and plant materials

Two experiments were conducted concurrently (sites A and B) in the same screen house in 2019 between the months of May and July at the Landmark University Greenhouse and Hydroponic Technology Center, a section of the Teaching and Research Farm of the University in Omu-Aran, Kwara State Nigeria. Experiment at site B was conducted simultaneously as A so as to validate the results of experiment A. Landmark University lies within Latitude 8° 7′ 26.21388″ and 5° 5′ 0.1788″. Both experiments (A & B) involved tomato (Solanum lycopersicum L. variety cherry) and cucumber (Cucumis sativus L. variety marketer) crops. For each crop, seeds were sown into a separate seed tray filled with coco peat (Coco peat, SRIMATHI EXPORT, INDIA). Cocopeat is the mesocarp tissue or husk after the grinding of coconut fruit. It has a lightweight and high water and nutrient holding capacities, it has an acceptable pH, electrical conductivity, and other chemical attributes27. Rice husk is the by-product of rice after milling. The rice husk used was collected from the rice processing mill of Landmark University. Rice husk is a highly porous and light weighted material with a very high specific area28.

Two sets of seed trays (one for organic and another for inorganic fertilizers) were used each for tomato and cucumber crops in the nursery. Both were raised in the nursery for two weeks before transplanting. Black grow bags (30 × 17 cm) filled with a coco peat/rice husk (1:4 ratio by volume) mixture with a weight of about 10 kg were arranged in a screen house. Both the nursery and establishment of crop proper take place in a screen house. The screen house has a galvanized iron as the frame, a UV covering on top, side net for screening insect pests the floor fairly covered with granite. Temperature and relative humidity within the screen house during the period of the experiment was monitored using a Thermograph and a Barograph, and they were at an average of 31 °C and 75%, respectively.

The grow bags were randomly placed in the screen house for the unbiased application of amendments. For both tomato and cucumber crops, the treatment comprised of six (6) levels of liquid organic fertilizer (5, 15, 25, 35, 45, 55 mL), in-organic fertilizer, and a control (ordinary borehole water). Levels of organic fertilizers were selected based on the recommendation of 20 mL of liquid organic fertilizer by29. The eight (8) treatments both for tomato and cucumber were arranged in a Completely Randomized Design replicated three times. One healthy plant was maintained per grow bag and four grow bags represent a treatment and there were 32 plants per block each for tomato and cucumber. For both crops, the experiment lasted for 90 days.

Organic and in-organic nutrient solutions

The liquid organic fertilizer used was obtained from the biomass of Mexican sunflower (Tithonia diversifolia). Fresh biomass (mainly leaves and stems) of the plant was collected from the Teaching and Research Farms of Landmark University, Nigeria. After rinsing, they were cut with a sterile knife into pieces of ≤ 1 cm size. A sample was taken for initial physicochemical analyses by grinding in a sterile mortal, diluted with sterile water and analyzed. The biomass was then soaked in sterile water inside a clean container, and allowed to ferment spontaneously for a period of 14 days. During the fermentation, samples were taken every 4 days for microbial analyses of the major players during the fermentation. At the end of fermentation, the mixture was separated using a sieve of mesh size ≤ 2 mm. The liquid portion was then refrigerated prior to the planting regime while another sample was taken to ascertain the physicochemical and microbial qualities of the produced liquid fertilizer. The chemical analysis is presented in Table 4. For inorganic fertilizer, Water soluble fertilizers employed in hydroponics were used (Hydroponics fertilizer, Anmol chemicals, India); calcium nitrate 650 mg L−1, potassium nitrate 450 mg L−1, magnesium 400 mg L−1, chelate 20 mg L−1, mono-ammonium phosphate 400 mg L−1. The electrical conductivity (EC) of the solution was 1.9 dS m-1.

Irrigation and fertigation

The tomato and cucumber plants were fertigated morning and evening daily for one hour on each occasion according to the treatments. Preparation of the nutrient solution was with borehole water and was supplied to plants by an online pressure drip irrigation system set at 2.0 L h-1 using an arrowhead on each tomato and cucumber plant. Different tanks (250 L) were installed according to the various treatments making a total of 8 tanks. The organic fertilizer was diluted according to the various treatments equivalent to 1.25, 3.75, 6.25, 8.75, 11.25, and 13.75 L per 250 L of water respectively for 5, 15, 25, 35, 45, and 55 mL treatments. The nutrient solutions were refilled when the consumption is less than 20% of the initial volume (250 L) in the tank. One day per week, crops were irrigated with ordinary water to wash out pipes and prevent deposits of salts. The same concentration of nutrient was used from transplanting to the termination of the study for both tomato and cucumber crops, however, at the flowering of the crops, the volume of fertigation was increased to 3.0 L h-1 to be able to cope with the size of the plants.

Trellising, pest and diseases control

For both tomato and cucumber crops, plant vines were supported by twisting them around a wire that is- attached to the roof of the screen house and 2 m from the ground. Lateral outgrowths were cut off every week to ensure a sturdy single stem. Pests and diseases were scouted every day. Whiteflies, aphids, and other insects were controlled with orizon (Producer, location of producer) (active ingredient, acetamiprid, and abamectin) using 0.133% v/v. Fungi were controlled using ridomil gold (Producer, Location of producer) at 2% w/v.

Determination of growth and yield of tomato and cucumber

Three tomato and cucumber plants were randomly selected for each treatment for the determination of growth parameters (plant height, leaf area, number of leaves per plant, and stem diameter) at mid the flowering stage of tomato and cucumber plants.The leaf area of tomato was calculated using the model (A = KL2) developed by Lyon30, where L = Length of tomato leaf, K = constant which is 0.1551, and A = leaf area of tomato. Similarly, the leaf area of cucumber was calculated using A = 0.88LW – 4.27, where L = cucumber leaf length and W = cucumber leaf width, A = leaf area of cucumber31.

Tomato fruits were ready for harvest from 65 days after transplanting, harvestings were done twice every week (Mondays and Fridays) for up to 85 days after transplanting. Similarly, harvesting of cucumber fruits started 35 days after transplanting and harvestings were also done twice a week (Mondays and Fridays), harvesting was carried out till 60 days after transplanting. Tomato and cucumber fruit yields were counted and weighed at each harvest.

Analysis of tomato and cucumber leaves and fruits

At the 50% flowering stage of tomato and cucumber plants, ten leaf samples were collected from each treatment. The leaf samples were oven-dried at 75 °C for 24 h and thereafter grounded. The grounded samples were later analyzed for nitrogen (N), phosphorous (P), potassium (K), calcium (Ca), and magnesium (Mg) content using the method of described by32. At harvest, four matured tomato and cucumber fruits of uniform size were selected per treatment, and their nutrient compositions were determined using the method of33.

Statistical analysis

All data collected on the growth, yield, leaf, and fruit nutrient contents of tomato and cucumber were subjected to analysis of variance (ANOVA). The SPSS V 21.0 (New York, USA) software was used to perform ANOVA and Duncan’s multiple range test (DMRT) was used to compare means at a 5% probability level.

Ethical approval

I confirm that all the research meets ethical guidelines and adheres to the legal requirements of the study country.

Compliance with international, national and/or institutional guidelines

Experimental research (either cultivated or wild), comply with relevant institutional, national, and international guidelines and legislation. Experimental studies were carried out in accordance with relevant institutional, national or international guidelines or regulation.


Source: Ecology - nature.com

Explained: Why perovskites could take solar cells to new heights

Vertebrate growth plasticity in response to variation in a mutualistic interaction