Graf, D. L. & Cummings, K. S. Review of the systematics and global diversity of freshwater mussel species (Bivalvia: Unionoida). J. Molluscan Stud. 73, 291–314. https://doi.org/10.1093/mollus/eym029 (2007).
Google Scholar
Graf, D. L. & Cummings, K. S. A “big data” approach to global freshwater mussel diversity (Bivalvia: Unionoida), with an updated checklist of genera and species. J. Molluscan Stud. 87, 034. https://doi.org/10.1093/mollus/eyaa034 (2021).
Google Scholar
Vaughn, C. C. Ecosystem services provided by freshwater mussels. Hydrobiologia 810, 15–27. https://doi.org/10.1007/s10750-017-3139-x (2018).
Google Scholar
Ożgo, M. et al. Lake-stream transition zones support hotspots of freshwater ecosystem services: Evidence from a 35-year study on unionid mussels. Sci. Total Environ. 774, 145114. https://doi.org/10.1016/j.scitotenv.2021.145114 (2021).
Google Scholar
Lopes-Lima, M. et al. Conservation of freshwater bivalves at the global scale: Diversity, threats and research needs. Hydrobiologia 810, 1–14. https://doi.org/10.1007/s10750-017-3486-7 (2018).
Google Scholar
Bolotov, I. N. et al. Climate warming as a possible trigger of keystone mussel population decline in oligotrophic rivers at the continental scale. Sci. Rep. 8, 35. https://doi.org/10.1038/s41598-017-18873-y (2018).
Google Scholar
Ferreira-Rodríguez, N. et al. Research priorities for freshwater mussel conservation assessment. Biol. Conserv. 231, 77–87. https://doi.org/10.1016/j.biocon.2019.01.002 (2019).
Google Scholar
Lundquist, S. P., Worthington, T. A. & Aldridge, D. C. Freshwater mussels as a tool for reconstructing climate history. Ecol. Ind. 101, 11–21. https://doi.org/10.1016/j.ecolind.2018.12.048 (2019).
Google Scholar
Sousa, R. et al. The role of anthropogenic habitats in freshwater mussel conservation. Glob. Change Biol. 27, 2298–2314. https://doi.org/10.1111/gcb.15549 (2021).
Google Scholar
Bogan, A. E. Freshwater bivalve extinctions (Mollusca: Unionoida): A search for causes. Integr. Comp. Biol. 33, 599–609. https://doi.org/10.1093/icb/33.6.599 (1993).
Google Scholar
Lydeard, C. et al. The global decline of nonmarine mollusks. Bioscience 54, 321–330. https://doi.org/10.1641/0006-3568(2004)054[0321:TGDONM]2.0.CO;2 (2004).
Google Scholar
Hughes, J. et al. Past and present patterns of connectivity among populations of four cryptic species of freshwater mussels Velesunio spp (Hyriidae) in central Australia. Mol. Ecol. 13, 3197–3212. https://doi.org/10.1111/j.1365-294X.2004.02305.x (2004).
Google Scholar
Martel, A. L. et al. Freshwater mussels (Bivalvia: Margaritiferidae, Unionidae) of the Atlantic Maritime Ecozone. In Assessment of Species Diversity in the Atlantic Maritime Ecozone (eds McAlpine, D. F. & Smith, I. M.) 551–598 (NRC Research Press, 2010).
Haag, W. R. North American Freshwater Mussels: Natural History, Ecology, and Conservation (Cambridge University Press, 2012).
Smith, C. H., Pfeiffer, J. M. & Johnson, N. A. Comparative phylogenomics reveal complex evolution of life history strategies in a clade of bivalves with parasitic larvae (Bivalvia: Unionoida: Ambleminae). Cladistics 36, 505–520. https://doi.org/10.1111/cla.12423 (2020).
Google Scholar
Sepkoski, J. J. Jr. & Rex, M. A. Distribution of freshwater mussels: Coastal rivers as biogeographic islands. Syst. Biol. 23, 165–188. https://doi.org/10.1093/sysbio/23.2.165 (1974).
Google Scholar
Haag, W. R. A hierarchical classification of freshwater mussel diversity in North America. J. Biogeogr. 37, 12–26. https://doi.org/10.1111/j.1365-2699.2009.02191.x (2010).
Google Scholar
Graf, D. L., Jones, H., Geneva, A. J., Pfeiffer, J. M. III. & Klunzinger, M. W. Molecular phylogenetic analysis supports a Gondwanan origin of the Hyriidae (Mollusca: Bivalvia: Unionida) and the paraphyly of Australasian taxa. Mol. Phylogenet. Evol. 85, 1–9. https://doi.org/10.1016/j.ympev.2015.01.012 (2015).
Google Scholar
Bolotov, I. N. et al. Ancient river inference explains exceptional Oriental freshwater mussel radiations. Sci. Rep. 7, 2135. https://doi.org/10.1038/s41598-017-02312-z (2017).
Google Scholar
Bolotov, I. N. et al. Integrative taxonomy, biogeography and conservation of freshwater mussels (Unionidae) in Russia. Sci. Rep. 10, 3072. https://doi.org/10.1038/s41598-020-59867-7 (2020).
Google Scholar
Lopes-Lima, M. et al. Diversity, biogeography, evolutionary relationships, and conservation of Eastern Mediterranean freshwater mussels (Bivalvia: Unionidae). Mol. Phylogenet. Evol. 163, 107261. https://doi.org/10.1016/j.ympev.2021.107261 (2021).
Google Scholar
Bolotov, I. N. et al. Eight new freshwater mussels (Unionidae) from tropical Asia. Sci. Rep. 9, 12053. https://doi.org/10.1038/s41598-019-48528-z (2019).
Google Scholar
Bolotov, I. N. et al. New freshwater mussel taxa discoveries clarify biogeographic division of Southeast Asia. Sci. Rep. 10, 6616. https://doi.org/10.1038/s41598-020-63612-5 (2020).
Google Scholar
Jeratthitikul, E., Paphatmethin, S., Zieritz, A., Lopes-Lima, M. & Bun, P. Hyriopsis panhai, a new species of freshwater mussel from Thailand (Bivalvia: Unionidae). Raffles Bull. Zool. 69, 124–136. https://doi.org/10.26107/RBZ-2021-0011 (2021).
Google Scholar
Jeratthitikul, E., Sucharit, C. & Prasankok, P. Molecular phylogeny of the Indochinese freshwater mussel genus Scabies Haas, 1911 (Bivalvia: Unionidae). Trop. Nat. Hist. 19, 21–36 (2019).
Jeratthitikul, E., Sutcharit, C., Ngor, P. B. & Prasankok, P. Molecular phylogeny reveals a new genus of freshwater mussels from the Mekong River Basin (Bivalvia: Unionidae). Eur. J. Taxon. 775, 119–142. https://doi.org/10.5852/ejt.2021.775.1553 (2021).
Google Scholar
Pfeiffer, J. M., Graf, D. L., Cummings, K. S. & Page, L. M. Taxonomic revision of a radiation of South-East Asian freshwater mussels (Unionidae: Gonideinae: Contradentini+ Rectidentini). Invertebr. Syst. 35, 394–470. https://doi.org/10.1071/IS20044 (2021).
Google Scholar
Zieritz, A. et al. A new genus and two new, rare freshwater mussel (Bivalvia: Unionidae) species endemic to Borneo are threatened by ongoing habitat destruction. Aquat. Conserv. https://doi.org/10.1002/aqc.3695 (2021).
Google Scholar
Smith, C. H., Johnson, N. A., Pfeiffer, J. M. & Gangloff, M. M. Molecular and morphological data reveal non-monophyly and speciation in imperiled freshwater mussels (Anodontoides and Strophitus). Mol. Phylogenet. Evol. 119, 50–62. https://doi.org/10.1016/j.ympev.2017.10.018 (2018).
Google Scholar
Inoue, K. et al. A new species of freshwater mussel in the genus Popenaias Frierson, 1927, from Gulf coastal rivers of central Mexico (Bivalvia: Unionida: Unionidae) with comments on the genus. Zootaxa 4816, 457–490. https://doi.org/10.11646/zootaxa.4816.4.3 (2020).
Google Scholar
Ortiz-Sepulveda, C. M. et al. Diversification dynamics of freshwater bivalves (Unionidae: Parreysiinae: Coelaturini) indicate historic hydrographic connections throughout the East African Rift System. Mol. Phylogenet. Evol. 148, 106816. https://doi.org/10.1016/j.ympev.2020.106816 (2020).
Google Scholar
Tomilova, A. A. et al. An endemic freshwater mussel species from the Orontes River basin in Turkey and Syria represents duck mussel’s intraspecific lineage: Implications for conservation. Limnologica 84, 125811. https://doi.org/10.1016/j.limno.2020.125811 (2020).
Google Scholar
Tomilova, A. A. et al. Evidence for plio-pleistocene duck mussel refugia in the Azov Sea river basins. Diversity 12, 118. https://doi.org/10.3390/d12030118 (2020).
Google Scholar
Pfeiffer, J. M., Sharpe, A. E., Johnson, N. A., Emery, K. F. & Page, L. M. Molecular phylogeny of the Nearctic and Mesoamerican freshwater mussel genus Megalonaias. Hydrobiologia 811, 139–151. https://doi.org/10.1007/s10750-017-3441-7 (2018).
Google Scholar
Bolotov, I. N. et al. A new genus and tribe of freshwater mussel (Unionidae) from Southeast Asia. Sci. Rep. 8, 10030. https://doi.org/10.1038/s41598-018-28385-y (2018).
Google Scholar
Konopleva, E. S. et al. New freshwater mussels from two Southeast Asian genera Bineurus and Thaiconcha (Pseudodontini, Gonideinae, Unionidae). Sci. Rep. 11, 8244. https://doi.org/10.1038/s41598-021-87633-w (2021).
Google Scholar
Lopes-Lima, M. et al. Freshwater mussels (Bivalvia: Unionidae) from the Rising Sun (Far East Asia): Phylogeny, systematics, and distribution. Mol. Phylogenet. Evol. 146, 106755. https://doi.org/10.1016/j.ympev.2020.106755 (2020).
Google Scholar
Rangin, C. Active and recent tectonics of the Burma Platelet in Myanmar. Geol. Soc. Lond. Mem. 48, 53–64. https://doi.org/10.1144/M48.3 (2017).
Google Scholar
Licht, A. et al. Magmatic history of central Myanmar and implications for the evolution of the Burma Terrane. Gondwana Res. 87, 303–319. https://doi.org/10.1016/j.gr.2020.06.016 (2020).
Google Scholar
Westerweel, J. et al. Burma Terrane part of the Trans-Tethyan arc during collision with India according to palaeomagnetic data. Nat. Geosci. 12, 863–868. https://doi.org/10.1038/s41561-019-0443-2 (2019).
Google Scholar
Morley, C. K., Chantraprasert, S., Kongchum, J. & Chenoll, K. The West Burma Terrane, a review of recent paleo-latitude data, its geological implications and constraints. Earth Sci. Rev. 220, 103722. https://doi.org/10.1016/j.earscirev.2021.103722 (2021).
Google Scholar
Martin, C. R. et al. Paleocene latitude of the Kohistan-Ladakh arc indicates multistage India-Eurasia collision. Proc. Natl. Acad. Sci. USA 117, 29487–29494. https://doi.org/10.1073/pnas.2009039117 (2020).
Google Scholar
Frisch, W., Meschede, M. & Blakey, R. C. Plate Tectonics: Continental Drift and Mountain Building (Springer Science & Business Media, 2010).
Ali, J. R. & Aitchison, J. C. Gondwana to Asia: Plate tectonics, paleogeography and the biological connectivity of the Indian sub-continent from the Middle Jurassic through latest Eocene (166–35 Ma). Earth Sci. Rev. 88, 145–166. https://doi.org/10.1016/j.earscirev.2008.01.007 (2008).
Google Scholar
Chatterjee, S., Goswami, A. & Scotese, C. R. The longest voyage: Tectonic, magmatic, and paleoclimatic evolution of the Indian plate during its northward flight from Gondwana to Asia. Gondwana Res. 23, 238–267. https://doi.org/10.1016/j.gr.2012.07.001 (2013).
Google Scholar
van Hinsbergen, D. et al. Greater India Basin hypothesis and a two-stage Cenozoic collision between India and Asia. Proc. Natl. Acad. Sci. USA 109, 7659–7664. https://doi.org/10.1073/pnas.1117262109 (2012).
Google Scholar
van Hinsbergen, D. J. et al. Reconstructing Greater India: Paleogeographic, kinematic, and geodynamic perspectives. Tectonophysics 760, 69–94. https://doi.org/10.1016/j.tecto.2018.04.006 (2019).
Google Scholar
Morley, C. K., Naing, T. T., Searle, M. & Robinson, S. A. Structural and tectonic development of the Indo-Burma ranges. Earth Sci. Rev. 200, 102992. https://doi.org/10.1016/j.earscirev.2019.102992 (2020).
Google Scholar
Poinar, G. Jr. Burmese amber: Evidence of Gondwanan origin and Cretaceous dispersion. Hist. Biol. 31, 1304–1309. https://doi.org/10.1080/08912963.2018.1446531 (2019).
Google Scholar
Zhang, X. et al. Tracing Argoland in eastern Tethys and implications for India-Asia convergence. GSA Bull. 133, 1712–1722. https://doi.org/10.1130/B35772.1 (2021).
Google Scholar
Pfeiffer, J. M., Graf, D. L., Cummings, K. S. & Page, L. M. Molecular phylogeny and taxonomic revision of two enigmatic freshwater mussel genera (Bivalvia: Unionidae incertae sedis: Harmandia and Unionetta) reveals a diverse clade of Southeast Asian Parreysiinae. J. Molluscan Stud. 84, 404–416. https://doi.org/10.1093/mollus/eyy028 (2018).
Google Scholar
Whelan, N. V., Geneva, A. J. & Graf, D. L. Molecular phylogenetic analysis of tropical freshwater mussels (Mollusca: Bivalvia: Unionoida) resolves the position of Coelatura and supports a monophyletic Unionidae. Mol. Phylogenet. Evol. 61, 504–514. https://doi.org/10.1016/j.ympev.2011.07.016 (2011).
Google Scholar
Konopleva, E. S. et al. A new genus and two new species of freshwater mussels (Unionidae) from Western Indochina. Sci. Rep. 9, 4106. https://doi.org/10.1038/s41598-019-39365-1 (2019).
Google Scholar
Muanta, S., Jeratthitikul, E., Panha, S. & Prasankok, P. Phylogeography of the freshwater bivalve genus Ensidens (Unionidae) in Thailand. J. Molluscan Stud. 85, 224–231. https://doi.org/10.1093/mollus/eyz013 (2019).
Google Scholar
Zieritz, A. et al. Factors driving changes in freshwater mussel (Bivalvia, Unionida) diversity and distribution in Peninsular Malaysia. Sci. Total Environ. 571, 1069–1078. https://doi.org/10.1016/j.scitotenv.2016.07.098 (2016).
Google Scholar
Bolotov, I. N. et al. New taxa of freshwater mussels (Unionidae) from a species-rich but overlooked evolutionary hotspot in Southeast Asia. Sci. Rep. 7, 11573. https://doi.org/10.1038/s41598-017-11957-9 (2017).
Google Scholar
Subba Rao, N. V. Handbook. Freshwater Molluscs of India (Zoological Survey of India, 1989).
Ramakrishna & Dey, A. Handbook on Indian Freshwater Molluscs (Zoological Survey of India, 2007).
Prashad, B. The marsupium and glochidium of some Unionidae and on the Indian species hitherto assigned to the genus Nodularia. Rec. Indian Mus. 15, 143–148 (1918).
Burdi, G. H., Baloch, W. A., Begum, F., Soomro, A. N. & Khuhawar, M. Y. Ecological studies on freshwater bivalve mussels (Pelecypoda) of Indus River and its canals at Kotri Barrage Sindh, Pakistan. Sindh Univ. Res. J. 41, 31–36 (2009).
Nesemann, H. et al. Aquatic Invertebrates of the Ganga River System: Volume 1—Mollusca, Annelida, Crustacea (in part) (Hasko Nesemann and Chandi Press, 2007).
Budha, P. B. A Field Guide to Freshwater Molluscs of Kailali, Far Western Nepal (Central Department of Zoology, Tribhuvan University, 2016).
Gittenberger, E., Leda, P., Gyeltshen, C. & Sherub, S. Distributional patterns of molluscan taxa in Bhutan (Mollusca). Biodiversität Naturausstattung Himalaya 4, 143–151 (2018).
Nanda, A. C., Sehgal, R. K. & Chauhan, P. R. Siwalik-age faunas from the Himalayan foreland Basin of South Asia. J. Asian Earth Sci. 162, 54–68. https://doi.org/10.1016/j.jseaes.2017.10.035 (2018).
Google Scholar
Vredenburg, E. & Prashad, B. Unionidae from the Miocene of Burma. Rec. Geol. Surv. India 51, 371–374 (1921).
Prashad, B. On some Fossil Indian Unionidae. Rec. Geol. Surv. India 60, 308–312 (1928).
Modell, H. Paläontologische und geologische Untersuchungen im Tertiär von Pakistan. 4. Die tertiären Najaden des Punjab und Vorderindiens. Abhandlungen der Bayerischen Akademie der Wissenschaften, Mathematisch-naturwissenschaftliche Klasse, neue Folge 135, 1–49 (1969).
Takayasu, K., Gurung, D. D. & Matsuoka, K. Some new species of freshwater bivalves from the Mio-Pliocene Churia Group, west-central Nepal. Trans. Proc. Paleontol. Soc. Jpn. New Ser. 179, 157–168. https://doi.org/10.14825/prpsj1951.1995.179_157 (1995).
Google Scholar
Gurung, D. Freshwater molluscs from the Late Neogene Siwalik Group, Surai Khola, western Nepal. J. Nepal Geol. Soc. 17, 7–28. https://doi.org/10.3126/jngs.v17i0.32095 (1998).
Google Scholar
Simpson, C. T. Synopsis of the naiades, or pearly fresh-water mussels. Proc. U.S. Natl. Mus. 22, 501–1044 (1900).
Madhyastha, N. A. & Mumbrekar, K. D. Two endemic genera of bivalves in the Tunga River of the Western Ghats, Karnataka, India. Tentacle 14, 23–24 (2006).
Prashad, B. Notes on lamellibranchs in the Indian Museum. Rec. Indian Mus. 19, 165–173 (1920).
Haas, F. Eine neude indische Najade, Trapezoideus prashadi. Senckenbergiana 4, 101–102 (1922).
Sowerby, G. B. Genus Unio. Conchologica Iconica 16, pls. 1, 61–96 (1868).
Haas, F. Die Unioniden. H.C. Küster, Systematisches Conchylien-Cabinet von Martini und Chemnitz 9, 257–288 (1919).
Hadl, G. Results of the Austrian-Ceylonese Hydrobiological Mission 1970 of the 1st Zoological Institute of the University of Vienna (Austria) and the Department of Zoology of the Vidyalankara University of Ceylon, Kelaniya. Part XVIII: Freshwater Mussels Bivalvia. Bull. Fish. Res. Stn. Sri Lanka (Ceylon) 25, 183–188 (1974).
Gittenberger et al. A Field Guide to the Common Molluscs of Bhutan (National Biodiversity Centre (NBC), Ministry of Agriculture and Forests, 2017).
Annandale, N. & Prashad, B. The Mollusca of the inland waters of Baluchistan and of Seistan. Rec. Indian Mus. 18, 17–62 (1919).
Simpson, C. T. A Descriptive Catalogue of the Naiades, or Pearly Fresh-Water Mussels. Parts I-III (Bryant Walker, 1914).
Mörch, O. A. L. On the land and fresh-water Mollusca of Greenland. Am. J. Conchol. 4, 25–40 (1868).
Schröter, J. S. Die Geschichte der Flussconchylien: Mit vorzüglicher Rücksicht auf Diejenigen Welche in den Thüringischen Wassern Leben (Halle, bey Johann Jacob Gebauer, 1779).
Spengler, L. Om Slaegterne Chaena Mya og Unio. Skrivter Naturhistorie-Selskabet 3, 16–69 (1993).
Haas, F. Bemerkungen über Spenglers Unionen. Videnskabelige Meddelelser fra Dansk naturhistorisk Forening i Kjøbenhav 65, 51–66 (1913).
Haas, F. Superfamilia Unionacea. Das Tierreich 88, 1–663 (1969).
Prashad, B. On some undescribed freshwater Molluscs from various parts of India and Burma. Rec. Geol. Surv. India 62, 428–433 (1930).
Conrad, T. A. A synopsis of the family of Naïades of North America, with notes, and a table of some of the genera and sub-genera of the family, according to their geographical distribution, and descriptions of genera and sub-genera. Proc. Acad. Natl. Sci. Phila. 6, 243–269 (1853).
Sowerby, G. B. Genus Unio. Conchol. Iconica 16, 31–54 (1866).
Frierson, L. S. A Classified and Annotated Check List of the North American Naiades (Baylor University Press, 1927).
Prashad, B. Studies on the anatomy of Indian Mollusca. The soft parts of some Indian Unionidae. Rec. Indian Mus. 16, 289–296 (1919).
Annandale, N. Further note on the burrows of Solenaia soleniformis. Rec. Indian Mus. 16, 205–206 (1919).
Godwin-Austen, H. H. Description of a new species of Margaritanopsis (Unionidae) from the Southern Shan States, with notes on Solenaia soleniformis. Rec. Indian Mus. 16, 203–205 (1919).
Pfeiffer, J. M., Breinholt, J. W. & Page, L. M. Unioverse: A phylogenetic resource for reconstructing the evolution of freshwater mussels (Bivalvia, Unionoida). Mol. Phylogenet. Evol. 137, 114–126. https://doi.org/10.1016/j.ympev.2019.02.016 (2019).
Google Scholar
Huang, X.-C. et al. Towards a global phylogeny of freshwater mussels (Bivalivia: Unionida): Species delimitation of Chinese taxa, mitochondrial phylogenomics, and diversification patterns. Mol. Phylogenet. Evol. 130, 45–59. https://doi.org/10.1016/j.ympev.2018.09.019 (2019).
Google Scholar
Bolotov, I. N., Kondakov, A. V., Konopleva, E. S. & Vikhrev, I. V. A new genus of ultra-elongate freshwater mussels from Vietnam and eastern China (Bivalvia: Unionidae). Ecol. Montenegrina 39, 1–6. https://doi.org/10.37828/em.2021.39.1 (2021).
Google Scholar
Pfeiffer, J. M. & Graf, D. L. Evolution of bilaterally asymmetrical larvae in freshwater mussels (Bivalvia: Unionoida: Unionidae). Zool. J. Linn. Soc. 175, 307–318. https://doi.org/10.1111/zoj.12282 (2015).
Google Scholar
Rafinesque, C. S. Continuation of a Monograph of the Bivalve Shells of the River Ohio and Other Rivers of the Western States. By Prof. C.S. Rafinesque. (Published at Brussels, September, 1820). Containing 46 species, from No. 76 to no. 121. Including an Appendix on Some Bivalve Shells of the Rivers of Hindostan, with a Supplement on the Fossil Bivalves of the Western States, and the Tulosites, A New Genus of Fossils (1831).
Blanford, W. T. Contributions to Indian Malacology no VII. List of species of Unio and Anodonta described as occurring in India, Ceylon and Burma. J. Asiat. Soc. Bengal 35, 134–155 (1866).
Frierson, L. S. Remarks on classification of the Unionidae. Nautilus 28, 6–8 (1914).
Johnson, R. I. The types of Unionidae (Mollusca: Bivalvia) described by C. S. Rafinesque in the Museum national d’Histoire naturelle, Paris. J. Conchyliol. 110, 35–37 (1973).
Vanatta, E. G. Rafinesque’s types of Unio. Proc. Acad. Natl. Sci. Phila. 67, 549–559 (1915).
Baker, H. B. Some of Rafinesque’s unionid names. The Nautilus 77, 140–142 (1964).
Williams, J. D., Bogan, A. E. & Garner, J. T. Freshwater mussels of Alabama and the Mobile Basin in Georgia, Mississippi and Tennessee (University of Alabama Press, 2008).
Bogan, A. E. A resolution of the nomenclatural confusion surrounding Plagiola Rafinesque, Epioblasma Rafinesque, and Dysnomia Agassiz (Mollusca: Bivalvia: Unionidae). Malacol. Rev. 30, 77–86 (1997).
Graf, D. L. & Cummings, K. S. Palaeoheterodont diversity (Mollusca: Trigonioida+ Unionoida): What we know and what we wish we knew about freshwater mussel evolution. Zool. J. Linn. Soc. 148, 343–394. https://doi.org/10.1111/j.1096-3642.2006.00259.x (2006).
Google Scholar
Modell, H. Das natlirliche System der Najaden. Arch. Molluskenkunde 74, 161–191 (1942).
Starobogatov, Y. I. Fauna of Molluscs and Zoogeographic Division of Continental Waterbodies of the Globe (Nauka, 1970).
Bolotov, I. N. et al. Discovery of Novaculina myanmarensis sp. nov. (Bivalvia: Pharidae: Pharellinae) closes the freshwater razor clams range disjunction in Southeast Asia. Sci. Rep. 8, 16325. https://doi.org/10.1038/s41598-018-34491-8 (2018).
Google Scholar
Than, W. et al. Phylogeography and distribution of the freshwater razor clams Novaculina myanmarensis and N. gangetica in Myanmar, with notes on two doubtful nominal taxa described as Novaculina members (Bivalvia: Pharidae). Ecol. Montenegrina 40, 59–67. https://doi.org/10.37828/em.2021.40.4 (2021).
Google Scholar
Haas, F. Beiträge zu einer Monographie der asiatischen Unioniden. Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft 38, 129–203 (1924).
Preston, H. B. Mollusca (Freshwater Gastropoda & Pelecypoda). Fauna of British India, including Ceylon and Burma (Taylor and Francis, 1915).
Prashad, B. A revision of the Burmese Unionidae. Rec. Indian Mus. 24, 91–111 (1922).
Theobald, W. Catalogue of the Recent Shells in the Museum of the Asiatic Society (Bengal Military Orphan Press, 1860).
Zieritz, A. et al. Diversity, biogeography and conservation of freshwater mussels (Bivalvia: Unionida) in East and Southeast Asia. Hydrobiologia 810, 29–44. https://doi.org/10.1007/s10750-017-3104-8 (2018).
Google Scholar
Konopleva, E. S. et al. A taxonomic review of Trapezidens (Bivalvia: Unionidae: Lamellidentini), a freshwater mussel genus endemic to Myanmar, with a description of a new species. Ecol. Montenegrina 27, 45–57. https://doi.org/10.37828/em.2020.27.6 (2020).
Google Scholar
Brandt, R. A. M. The non-marine aquatic mollusca of Thailand. Arch. Mollusckenkunde 105, 1–423 (1974).
Neumayr, M. Süsswasser-Mollusken. Die wissenschaftlichen ergebnisse der reise des grafen Béla Széchenyi in Ostasien 1877–1880(2), 637–662 (1899).
Tripathy, B. & Mukhopadhayay, A. Freshwater molluscs of India: An insight of into their diversity, distribution and conservation. In Aquatic Ecosystem: Biodiversity, Ecology and Conservation (eds Rawat, M. et al.) 163–195 (Springer, 2015).
Prashad, B. VIII—Some Noteworthy Examples of Parallel Evolution in the Molluscan Faunas of South-eastern Asia and South America. Proc. R. Soc. Edinb. 51, 42–53. https://doi.org/10.1017/s0370164600022987 (1932).
Google Scholar
Smith, E. A. Description of Mulleria dalyi, n. sp., from India. Proc. Malacol. Soc. Lond. 3, 14–16 (1898).
Bogan, A. E. & Hoeh, W. R. On becoming cemented: Evolutionary relationships among the genera in the freshwater bivalve family Etheriidae (Bivalvia: Unionoida). Geol. Soc. Lond. Spec. Publ. 177, 159–168. https://doi.org/10.1144/GSL.SP.2000.177.01.09 (2000).
Google Scholar
Bogan, A. E. & Roe, K. J. Freshwater bivalve (Unioniformes) diversity, systematics, and evolution: Status and future directions. J. N. Am. Benthol. Soc. 27, 349–369. https://doi.org/10.1899/07-069.1 (2008).
Google Scholar
Hoeh, W. R., Bogan, A. E., Heard, W. H. & Chapman, E. G. Palaeoheterodont phylogeny, character evolution, diversity and phylogenetic classification: A reflection on methods of analysis. Malacologia 51, 307–317. https://doi.org/10.4002/040.051.0206 (2009).
Google Scholar
Woodward, M. F. On the anatomy of Mulleria dalyi, Smth. J. Molluscan Stud. 3, 87–91. https://doi.org/10.1093/oxfordjournals.mollus.a065152 (1898).
Google Scholar
Aravind, N. A. et al. The status and distribution of freshwater molluscs of the Western Ghats. In The Status and Distribution of Freshwater Biodiversity in the Western Ghats, India (eds Molur, S. et al.) 21–42 (IUCN and Zoo Outreach Organisation, 2011).
Madhyastha, N. A. Pseudomulleria dalyi (Acostea dalyi): A rare cemented bivalve of Western Ghats. Zoos’ Print J. 16, 573 (2001).
Loria, S. F. & Prendini, L. Out of India, thrice: Diversification of Asian forest scorpions reveals three colonizations of Southeast Asia. Sci. Rep. 10, 22301. https://doi.org/10.1038/s41598-020-78183-8 (2020).
Google Scholar
Köhler, F. & Glaubrecht, M. Out of Asia and into India: On the molecular phylogeny and biogeography of the endemic freshwater gastropod Paracrostoma Cossmann, 1900 (Caenogastropoda: Pachychilidae). Biol. J. Lin. Soc. 91, 627–651. https://doi.org/10.1111/j.1095-8312.2007.00866.x (2007).
Google Scholar
Dahanukar, N., Raut, R. & Bhat, A. Distribution, endemism and threat status of freshwater fishes in the Western Ghats of India. J. Biogeogr. 31, 123–136. https://doi.org/10.1046/j.0305-0270.2003.01016.x (2004).
Google Scholar
Britz, R. et al. Aenigmachannidae, a new family of snakehead fishes (Teleostei: Channoidei) from subterranean waters of South India. Sci. Rep. 10, 16081. https://doi.org/10.1038/s41598-020-73129-6 (2020).
Google Scholar
Hedges, S. B. The coelacanth of frogs. Nature 425, 669–670. https://doi.org/10.1038/425669a (2003).
Google Scholar
Dutta, S. K., Vasudevan, K., Chaitra, M. S., Shanker, K. & Aggarwal, R. K. Jurassic frogs and the evolution of amphibian endemism in the Western Ghats. Curr. Sci. 86, 211–216 (2004).
Google Scholar
Roelants, K., Jiang, J. & Bossuyt, F. Endemic ranid (Amphibia: Anura) genera in southern mountain ranges of the Indian subcontinent represent ancient frog lineages: Evidence from molecular data. Mol. Phylogenet. Evol. 31, 730–740. https://doi.org/10.1016/j.ympev.2003.09.011 (2004).
Google Scholar
Van Bocxlaer, I. et al. Mountain-associated clade endemism in an ancient frog family (Nyctibatrachidae) on the Indian subcontinent. Mol. Phylogenet. Evol. 62, 839–847. https://doi.org/10.1016/j.ympev.2011.11.027 (2012).
Google Scholar
Krishnan, R. M. & Ramesh, B. R. Endemism and sexual systems in the evergreen tree flora of the Western Ghats, India. Divers. Distrib. 11, 559–565. https://doi.org/10.1111/j.1366-9516.2005.00190.x (2005).
Google Scholar
Mörch, O. A. L. Catalogue des Mollusques terrestres et fluviatiles des anciennes colonies du golfe du Bengale. J. Conchyliol. 20, 303–345 (1872).
Graf, D. L. & Cummings, K. S. Freshwater mussel (Mollusca: Bivalvia: Unionoida) richness and endemism in the ecoregions of Africa and Madagascar based on comprehensive museum sampling. Hydrobiologia 678, 17–36. https://doi.org/10.1007/s10750-011-0810-5 (2011).
Google Scholar
Li, Z. et al. Kinematic evolution of the West Burma block during and after India-Asia collision revealed by paleomagnetism. J. Geodyn. 134, 101690. https://doi.org/10.1016/j.jog.2019.101690 (2020).
Google Scholar
Van Damme, D., Bogan, A. E. & Dierick, M. A revision of the Mesozoic naiads (Unionoida) of Africa and the biogeographic implications. Earth Sci. Rev. 147, 141–200. https://doi.org/10.1016/j.earscirev.2015.04.011 (2015).
Google Scholar
Hall, R. Late Jurassic-Cenozoic reconstructions of the Indonesian region and the Indian Ocean. Tectonophysics 570, 1–41. https://doi.org/10.1016/j.tecto.2012.04.021 (2012).
Google Scholar
Bosworth, W. Mesozoic and early Tertiary rift tectonics in East Africa. Tectonophysics 209, 115–137. https://doi.org/10.1016/0040-1951(92)90014-W (1992).
Google Scholar
Guiraud, R., Bosworth, W., Thierry, J. & Delplanque, A. Phanerozoic geological evolution of Northern and Central Africa: An overview. J. Afr. Earth Sci. 43, 83–143. https://doi.org/10.1016/j.jafrearsci.2005.07.017 (2005).
Google Scholar
Wilson, M. & Guiraud, R. Magmatism and rifting in Western and Central Africa, from Late Jurassic to Recent times. Tectonophysics 213, 203–225 (1992).
Google Scholar
Chatterjee, S., Scotese, C. R. & Bajpai, S. Indian Plate and Its Epic Voyage from Gondwana to Asia: Its Tectonic, Paleoclimatic, and Paleobiogeographic Evolution (Special Paper 529, The Geological Society of America, 2017).
Briggs, J. C. The biogeographic and tectonic history of India. J. Biogeogr. 30, 381–388. https://doi.org/10.1046/j.1365-2699.2003.00809.x (2003).
Google Scholar
Hartman, J. H., Erickson, D. N. & Bakken, A. Stephen Hislop and his 1860 Cretaceous continental molluscan new species descriptions in Latin from the Deccan Plateau, India. Palaeontology 51, 1225–1252. https://doi.org/10.1111/j.1475-4983.2008.00807.x (2008).
Google Scholar
Vandamme, D., Courtillot, V., Besse, J. & Montigny, R. Paleomagnetism and age determinations of the Deccan Traps (India): Results of a Nagpur-Bombay Traverse and review of earlier work. Rev. Geophys. 29, 159–190. https://doi.org/10.1029/91RG00218 (1991).
Google Scholar
Bolotov, I. N. et al. Multi-locus fossil-calibrated phylogeny, biogeography and a subgeneric revision of the Margaritiferidae (Mollusca: Bivalvia: Unionoida). Mol. Phylogenet. Evol. 103, 104–121. https://doi.org/10.1016/j.ympev.2016.07.020 (2016).
Google Scholar
Lyubas, A. A. et al. A taxonomic revision of fossil freshwater pearl mussels (Bivalvia: Unionoida: Margaritiferidae) from Pliocene and Pleistocene deposits of Southeastern Europe. Ecol. Montenegrina 21, 1–16. https://doi.org/10.37828/em.2019.21.1 (2019).
Google Scholar
Campbell, D. C. et al. Phylogeny of North American amblemines (Bivalvia, Unionoida): Prodigious polyphyly proves pervasive across genera. Invertebr. Biol. 124, 131–164 (2005).
Lopes-Lima, M. et al. Revisiting the North American freshwater mussel genus Quadrula sensu lato (Bivalvia: Unionidae): Phylogeny, taxonomy and species delineation. Zool. Scr. 48, 313–336. https://doi.org/10.1111/zsc.12344 (2019).
Google Scholar
Aksenova, O. V. et al. Species richness, molecular taxonomy and biogeography of the radicine pond snails (Gastropoda: Lymnaeidae) in the Old World. Sci. Rep. 8, 11199. https://doi.org/10.1038/s41598-018-29451-1 (2018).
Google Scholar
Kosuch, J., Vences, M., Dubois, A., Ohler, A. & Böhme, W. Out of Asia: Mitochondrial DNA evidence for an oriental origin of tiger frogs, genus Hoplobatrachus. Mol. Phylogenet. Evol. 21, 398–407. https://doi.org/10.1006/mpev.2001.1034 (2001).
Google Scholar
Sil, M., Aravind, N. A. & Karanth, K. P. Into-India or out-of-India? Historical biogeography of the freshwater gastropod genus Pila (Caenogastropoda: Ampullariidae). Biol. J. Lin. Soc. 129, 752–764. https://doi.org/10.1093/biolinnean/blz171 (2020).
Google Scholar
Sil, M., Aravind, N. A. & Karanth, K. P. Role of geography and climatic oscillations in governing into-India dispersal of freshwater snails of the family: Viviparidae. Mol. Phylogenet. Evol. 138, 174–181. https://doi.org/10.1016/j.ympev.2019.05.027 (2019).
Google Scholar
Garg, S. & Biju, S. D. New microhylid frog genus from Peninsular India with Southeast Asian affinity suggests multiple Cenozoic biotic exchanges between India and Eurasia. Sci. Rep. 9, 1906. https://doi.org/10.1038/s41598-018-38133-x (2019).
Google Scholar
Gorin, V. A. et al. A little frog leaps a long way: Compounded colonizations of the Indian Subcontinent discovered in the tiny Oriental frog genus Microhyla (Amphibia: Microhylidae). PeerJ 8, e9411. https://doi.org/10.7717/peerj.9411 (2020).
Google Scholar
Karanth, K. P. An island called India: Phylogenetic patterns across multiple taxonomic groups reveal endemic radiations. Curr. Sci. 108, 1847–1851 (2015).
Karanth, K. P. Out-of-India Gondwanan origin of some tropical Asian biota. Curr. Sci. 90, 789–792 (2006).
Datta-Roy, A. & Karanth, K. P. The Out-of-India hypothesis: What do molecules suggest?. J. Biosci. 34, 687–697. https://doi.org/10.1007/s12038-009-0057-8 (2009).
Google Scholar
Gower, D. J. et al. A molecular phylogeny of ichthyophiid caecilians (Amphibia: Gymnophiona: Ichthyophiidae): Out of India or out of South East Asia?. Proc. R. Soc. Lond. B 269, 1563–1569. https://doi.org/10.1098/rspb.2002.2050 (2002).
Google Scholar
Kamei, R. G. et al. Discovery of a new family of amphibians from northeast India with ancient links to Africa. Proc. R. Soc. B 279, 2396–2401. https://doi.org/10.1098/rspb.2012.0150 (2012).
Google Scholar
Yamahira, K. et al. Mesozoic origin and ‘out-of-India’radiation of ricefishes (Adrianichthyidae). Biol. Let. 17, 20210212. https://doi.org/10.1098/rsbl.2021.0212 (2021).
Google Scholar
Klaus, S., Schubart, C. D., Streit, B. & Pfenninger, M. When Indian crabs were not yet Asian-biogeographic evidence for Eocene proximity of India and Southeast Asia. BMC Evol. Biol. 10, 287. https://doi.org/10.1186/1471-2148-10-287 (2010).
Google Scholar
Joshi, J., Karanth, P. K. & Edgecombe, G. D. The out-of-India hypothesis: Evidence from an ancient centipede genus, Rhysida (Chilopoda: Scolopendromorpha) from the Oriental Region, and systematics of Indian species. Zool. J. Linn. Soc. 189, 828–861. https://doi.org/10.1093/zoolinnean/zlz138 (2020).
Google Scholar
Foley, S., Krehenwinkel, H., Cheng, D. Q. & Piel, W. H. Phylogenomic analyses reveal a Gondwanan origin and repeated out of India colonizations into Asia by tarantulas (Araneae: Theraphosidae). PeerJ 9, e11162. https://doi.org/10.7717/peerj.11162 (2021).
Google Scholar
Dayanandan, S., Ashton, P. S., Williams, S. M. & Primack, R. B. Phylogeny of the tropical tree family Dipterocarpaceae based on nucleotide sequences of the chloroplast rbcL gene. Am. J. Bot. 86, 1182–1190 (1999).
Google Scholar
Conti, E., Eriksson, T., Schönenberger, J., Sytsma, K. J. & Baum, D. A. Early Tertiary out-of-India dispersal of Crypteroniaceae: Evidence from phylogeny and molecular dating. Evolution 56, 1931–1942. https://doi.org/10.1111/j.0014-3820.2002.tb00119.x (2002).
Google Scholar
Chen, J. et al. Eurypterogerron kachinensis gen et sp nov, a remarkable minlagerrontid (Hemiptera, Cicadomorpha) in mid-Cretaceous Burmese amber. Cretaceous Res. 110, 104418. https://doi.org/10.1016/j.cretres.2020.104418 (2020).
Google Scholar
Rasnitsyn, A. P. & Öhm-Kühnle, C. Three new female Aptenoperissus from mid-Cretaceous Burmese amber (Hymenoptera, Stephanoidea, Aptenoperissidae): Unexpected diversity of paradoxical wasps suggests insular features of source biome. Cretac. Res. 91, 168–175. https://doi.org/10.1016/j.cretres.2018.06.004 (2018).
Google Scholar
Zhang, Q., Rasnitsyn, A. P., Wang, B. & Zhang, H. Hymenoptera (wasps, bees and ants) in mid-Cretaceous Burmese amber: A review of the fauna. Proc. Geol. Assoc. 129, 736–747. https://doi.org/10.1016/j.pgeola.2018.06.004 (2018).
Google Scholar
Bolotov, I. N. et al. A new fossil piddock (Bivalvia: Pholadidae) may indicate estuarine to freshwater environments near Cretaceous amber-producing forests in Myanmar. Sci. Rep. 11, 6646. https://doi.org/10.1038/s41598-021-86241-y (2021).
Google Scholar
Balashov, I. A., Perkovsky, E. E. & Vasilenko, D. V. A mid-Cretaceous land snail Burminella artiukhini gen. et. sp. nov. from Burmese amber: A “missing link” between Pupinidae and other Cyclophoroidea? (Caenogastropoda). Cretaceous Res. 118, 104941. https://doi.org/10.1016/j.cretres.2021.104941 (2021).
Google Scholar
Balashov, I. An inventory of molluscs recorded from mid-Cretaceous Burmese amber, with the description of a land snail, Euthema annae sp. nov. (Caenogastropoda, Cyclophoroidea, Diplommatinidae). Cretaceous Res. 118, 104676. https://doi.org/10.1016/j.cretres.2020.104676 (2021).
Google Scholar
Yu, T., Neubauer, T. A. & Jochum, A. First freshwater gastropod preserved in amber suggests long-distance dispersal during the Cretaceous Period. Geol. Mag. 58, 1327–1334. https://doi.org/10.1017/S0016756821000285 (2021).
Google Scholar
Bingle-Davis, M. J. Systematics, diversity, and origins of Upper Cretaceous continental molluscan fauna in the infra- and intertrappean strata of the Deccan Plateau, central India (PhD Dissertation) (University of North Dakota, 2012).
Huang, H. et al. At a crossroads: The late Eocene flora of central Myanmar owes its composition to plate collision and tropical climate. Rev. Palaeobot. Palynol. 291, 104441. https://doi.org/10.1016/j.revpalbo.2021.104441 (2021).
Google Scholar
Westerweel, J. et al. Burma Terrane collision and northward indentation in the Eastern Himalayas recorded in the Eocene-Miocene Chindwin Basin (Myanmar). Tectonics 39, e2020TC006413. https://doi.org/10.1029/2020TC006413 (2020).
Google Scholar
Soe, T. T. & Watkinson, I. M. The Sagaing Fault Myanmar. Geol. Soc. 48, 413–441. https://doi.org/10.1144/M48.19 (2017).
Google Scholar
de Sena Oliveira, I. et al. Earliest onychophoran in amber reveals Gondwanan migration patterns. Curr. Biol. 26, 2594–2601. https://doi.org/10.1016/j.cub.2016.07.023 (2016).
Google Scholar
Gustafson, L. L. et al. Evaluation of a nonlethal technique for hemolymph collection in Elliptio complanata, a freshwater bivalve (Mollusca: Unionidae). Dis. Aquat. Org. 65, 159–165. https://doi.org/10.3354/dao065159 (2005).
Google Scholar
Jaksch, K., Eschner, A., Rintelen, T. V. & Haring, E. DNA analysis of molluscs from a museum wet collection: A comparison of different extraction methods. BMC. Res. Notes 9, 348. https://doi.org/10.1186/s13104-016-2147-7 (2016).
Google Scholar
Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).
Google Scholar
Graf, D. L. Patterns of freshwater bivalve global diversity and the state of phylogenetic studies on the Unionoida, Sphaeriidae, and Cyrenidae. Am. Malacol. Bull. 31, 135–153. https://doi.org/10.4003/006.031.0106 (2013).
Google Scholar
Nguyen, L.-T., Schmidt, H. A., Haeseler, V. A. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274. https://doi.org/10.1093/molbev/msu300 (2015).
Google Scholar
Ronquist, F. et al. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542. https://doi.org/10.1093/sysbio/sys029 (2012).
Google Scholar
Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589. https://doi.org/10.1038/nmeth.4285 (2017).
Google Scholar
Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522. https://doi.org/10.1093/molbev/msx281 (2017).
Google Scholar
Trifinopoulos, J., Nguyen, L. T., von Haeseler, A. & Minh, B. Q. W-IQ-TREE: A fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 44, W232–W235. https://doi.org/10.1093/nar/gkw256 (2016).
Google Scholar
Miller, M., Pfeiffer, W. & Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Gateway Computing Environments Workshop (GCE) 1–8 (IEEE, 2010).
Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874. https://doi.org/10.1093/molbev/msw054 (2016).
Google Scholar
Kapli, P. et al. Multi-rate Poisson tree processes for single-locus species delimitation under maximum likelihood and Markov chain Monte Carlo. Bioinformatics 33, 1630–1638. https://doi.org/10.1093/bioinformatics/btx025 (2017).
Google Scholar
Puillandre, N., Brouillet, S. & Achaz, G. ASAP: Assemble species by automatic partitioning. Mol. Ecol. Resour. 21, 609–620. https://doi.org/10.1111/1755-0998.13281 (2021).
Google Scholar
Villesen, P. FaBox: An online toolbox for fasta sequences. Mol. Ecol. Notes 7, 965–968. https://doi.org/10.1111/j.1471-8286.2007.01821.x (2007).
Google Scholar
Bouckaert, R. et al. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 15, 1–28. https://doi.org/10.1371/journal.pcbi.1006650 (2019).
Google Scholar
Bouckaert, R. et al. BEAST 2: A software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 10, e1003537. https://doi.org/10.1371/journal.pcbi.1003537 (2014).
Google Scholar
Zieritz, A. et al. Mitogenomic phylogeny and fossil-calibrated mutation rates for all F-and M-type mtDNA genes of the largest freshwater mussel family, the Unionidae (Bivalvia). Zool. J. Linn. Soc. 193, 1088–1107. https://doi.org/10.1093/zoolinnean/zlaa153 (2020).
Google Scholar
Froufe, E. et al. Who lives where? Molecular and morphometric analyses clarify which Unio species (Unionida, Mollusca) inhabit the southwestern Palearctic. Org. Divers. Evol. 16, 597–611. https://doi.org/10.1007/s13127-016-0262-x (2016).
Google Scholar
Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973. https://doi.org/10.1093/molbev/mss075 (2012).
Google Scholar
Rambaut, A. et al. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904. https://doi.org/10.1093/sysbio/syy032 (2018).
Google Scholar
Matzke, N. J. Model selection in historical biogeography reveals that founder-event speciation is a crucial process in island clades. Syst. Biol. 63, 951–970. https://doi.org/10.1093/sysbio/syu056 (2014).
Google Scholar
Matzke, N. J. Probabilistic historical biogeography: New models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing. Front. Biogeogr. 5, 242–248. https://doi.org/10.21425/F5FBG19694 (2013).
Google Scholar
Yu, Y., Blair, C. & He, X. J. RASP 4: Ancestral state reconstruction tool for multiple genes and characters. Mol. Biol. Evol. 37, 604–606. https://doi.org/10.1093/molbev/msz257 (2020).
Google Scholar
Ree, R. H. & Sanmartín, I. Conceptual and statistical problems with the DEC+ J model of founder-event speciation and its comparison with DEC via model selection. J. Biogeogr. 45, 741–749. https://doi.org/10.1111/jbi.13173 (2018).
Google Scholar
Yu, Y., Harris, A. J. & He, X. S-DIVA (Statistical Dispersal-Vicariance Analysis): A tool for inferring biogeographic histories. Mol. Phylogenet. Evol. 56, 848–850. https://doi.org/10.1016/j.ympev.2010.04.011 (2010).
Google Scholar
Müller, R. D. et al. GPlates: Building a virtual Earth through deep time. Geochem. Geophys. Geosyst. 19, 2243–2261. https://doi.org/10.1029/2018GC007584 (2018).
Google Scholar
Müller, R. D. et al. A global plate model including lithospheric deformation along major rifts and orogens since the Triassic. Tectonics 38, 1884–1907. https://doi.org/10.1029/2018TC005462 (2019).
Google Scholar
Cao, X. et al. A deforming plate tectonic model of the South China Block since the Jurassic. Gondwana Res. https://doi.org/10.1016/j.gr.2020.11.010 (2020).
Google Scholar
Young, A. et al. Global kinematics of tectonic plates and subduction zones since the late Paleozoic Era. Geosci. Front. 10, 989–1013. https://doi.org/10.1016/j.gsf.2018.05.011 (2019).
Google Scholar
Torsvik, T. H. et al. Pacific-Panthalassic reconstructions: Overview, errata and the way forward. Geochem. Geophys. Geosyst. 20, 3659–3689. https://doi.org/10.1029/2019GC008402 (2019).
Google Scholar
Nevill, G. List of the Mollusca brought back by Dr. J. Anderson from Yunnan and Upper Burma, with descriptions of new species. J. Asiatic Soc. Bengal 46, 14–41 (1877).
Bolotov, I. N. et al. Indonaia rectangularis (Tapparone-Canefri, 1889), comb. nov., a forgotten freshwater mussel species from Myanmar. ZooKeys 852, 23–30. https://doi.org/10.3897/zookeys.852.33898 (2019).
Google Scholar
Eydoux, F. Mollusques. Magasin Zool. 8, 181–192 (1838).
Lea, I. Observations on the Naïades, and descriptions of new species of that and other families. Trans. Am. Philos. Soc. 4, 63–121 (1831).
Nesemann, H. A., Sharma, S. U., Sharma, G. O. & Sinha, R. K. Illustrated checklist of large freshwater bivalves of the Ganga River system (Mollusca: Bivalvia: Solecurtidae, Unionidae, Amblemidae). Nachrichchtenblatt Ersten Vorarlberger Malakologischen Gesellschaft 13, 1–51 (2005).
Gmelin, J. F. Systema Naturae per Regna Tria Naturae, Secundum Classes, Ordines, Genera, Species, cum Characteribus, Differentiis, Synonymis, locis. Curt 1(6), 3021–3909 (1791).
Lea, I. Description of twenty-five new species of exotic uniones. Proc. Acad. Natl. Sci. Phila. 8, 92–95 (1856).
Martens, E. V. Binnen-Conchylien aus Ober-Birma. Arch. Nat. 65, 30–48 (1899).
Preston, H. B. A catalogue of the Asiatic naiades in the collection of the Indian Museum, Calcutta, with descriptions of new species. Rec. Indian Mus. 7, 279–308 (1912).
Annandale, N. & Prashad, B. XXVIII. The aquatic and amphibious Mollusca of Manipur. Rec. Indian Mus. 22, 529–631 (1921).
Annandale, N. & Prashad, B. Some freshwater molluscs from the Bombay Presidency. Rec. Indian Mus. 16, 139–152 (1919).
Philippi, R. A. Unio. Tab. I. Abbildungen und Beschreibungen neuer oder wenig gekannter Conchylien 1, 19–20 (1843).
Hanley, S. Appendix, containing descriptions of the shells delineated in the plates, yet not described in the text; with a systematic list of the engravings, etc. In An Illustrated and Descriptive Catalogue of Recent Bivalve Shells 335–389 (Williams and Norgate, 1856).
Theobald, W. Descriptions of some new land and freshwater shells from India and Burmah. J. Asiatic Soc. Bengal 45, 184–189 (1876).
Lea, I. Observations on the Naïades; and descriptions of new species of that and other families. Trans. Am. Philos. Soc. 5, 23–119 (1834).
Hutton, T. Notices of some land and fresh water shells occurring in Afghanistan. J. Asiatic Soc. Bengal 18, 649–661 (1849).
Annandale, N. Aquatic molluscs of the Inlé Lake and connected waters. Rec. Indian Mus. 14, 103–182 (1918).
Gould, A. A. D. Gould described new shells, received from Rev Mr Mason, of Burmah. Proc. Boston Soc. Nat. Hist. 2, 218–221 (1847).
Benson, W. H. Descriptions of Indian and Burmese species of the genus Unio, Retz. Ann. Mag. Nat. Hist. 10, 184–195 (1862).
Lea, I. Description of new freshwater and land shells. Trans. Am. Philos. Soc. 6, 1–154 (1838).
Lamarck, J.-B. Histoire naturelle des animaux sans vertèbres. Vol. 6 (Chez l’Auteur, 1819).
Müller, O. F. Vermivm Terrestrium et Fluviatilium, Seu Animalium Infusoriorum, Helminthicorum et Testaceorum, non Marinorum, Succincta Historia. Havniae Lisiae 2, 1–214 (1774).
Lea, I. Descriptions of three new species of exotic uniones. Proc. Acad. Natl. Sci. Phila. 11, 331 (1860).
Lea, I. Continuation of paper on fresh water and land shells. Proc. Am. Philos. Soc. 2, 30–34 (1841).
Benson, W. H. Descriptive catalogue of a collection of land and fresh-water shells, chiefly contained in the museum of the Asiatic Society. J. Asiatic Soc. Bengal 5, 741–750 (1836).
Hislop, S. Description of fossil shells, from the above-described deposits. Q. J. Geol. Soc. Lond. 16, 166–181 (1860).
Malcolmson, J. G. XXXVIII: On the Fossils of the Eastern portion of the Great Basaltic District of India. Trans. Geol. Soc. Lond. 5, 537–575 (1840).
Newbold, C. Summary of the Geology of Southern India. Part V. Fresh-water Limestones and Cherts. J. R. Asiatic Soc. Great Br. Irel. 8, 219–227 (1846).
Prashad, B. On a new fossil unionid from the intertrappean beds of Peninsular India. Rec. Geol. Surv. India 51, 368–370 (1921).
Lopes-Lima, M. et al. Phylogeny of the most species-rich freshwater bivalve family (Bivalvia: Unionida: Unionidae): Defining modern subfamilies and tribes. Mol. Phylogenet. Evol. 106, 174–191. https://doi.org/10.1016/j.ympev.2016.08.021 (2017).
Google Scholar
Bird, P. An updated digital model of plate boundaries. Geochem. Geophys. Geosyst. 4, 1–52. https://doi.org/10.1029/2001GC000252 (2003).
Google Scholar
Preece, R. C. et al. William Benson and the Golden Age of Malacology in British India. Trop. Nat. Hist. 22, 1–612 (2022).
Google Scholar
Source: Ecology - nature.com