in

Ornamental roses for conservation of leafcutter bee pollinators

  • Potts, S. G. et al. (eds.). IPBES: The Assessment Report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on Pollinators, Pollination and Food Production (Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, Bonn, Germany) (2016).

  • Potts, S. G. et al. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 25, 345–353 (2010).

    PubMed 

    Google Scholar 

  • Goulson, D., Nicholls, E., Botías, C. & Rotheray, E. L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347, 1255957 (2015).

    PubMed 

    Google Scholar 

  • Majewska, A. A. & Altizer, S. Planting gardens to support insect pollinators. Conserv. Biol. 34, 15–25 (2020).

    PubMed 

    Google Scholar 

  • Image, M. et al. Does agri-environment scheme participation in England increase pollinator populations and crop pollination services?. Agric. Ecosyst. Environ. 325, 107755 (2022).

    Google Scholar 

  • Vaissière, B., Freitas, B. M. & Gemmill-Herren, B. Protocol to Detect and Assess Pollination Deficits in Crops: A Handbook for Its Use (FAO, 2011).

    Google Scholar 

  • Archer, C. R., Pirk, C. W. W., Carvalheiro, L. G. & Nicolson, S. W. Economic and ecological implications of geographic bias in pollinator ecology in the light of pollinator declines. Oikos 123, 401–407 (2014).

    Google Scholar 

  • M’Gonigle, L. K., Ponisio, L. C., Cutler, K. & Kremen, C. Habitat restoration promotes pollinator persistence and colonization in intensively managed agriculture. Ecol. Appl. 25, 1557–1565 (2015).

    PubMed 

    Google Scholar 

  • Garbuzov, M. & Ratnieks, F. L. W. Listmania: The strengths and weaknesses of lists of garden plants to help pollinators. Bioscience 64, 1019–1026 (2014).

    Google Scholar 

  • Garbuzov, M. & Ratnieks, F. L. W. Quantifying variation among garden plants in attractiveness to bees and other flower-visiting insects. Funct. Ecol. 28, 364–374 (2014).

    Google Scholar 

  • Garbuzov, M., Alton, K. & Ratnieks, F. L. W. Most ornamental plants on sale in garden centres are unattractive to flower-visiting insects. PeerJ 5, e3066 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Nichols, R. N., Goulson, D. & Holland, J. M. The best wildflowers for wild bees. J. Insect Conserv. 23, 819–830 (2019).

    Google Scholar 

  • Harmon-Threatt, A. Influence of nesting characteristics on health of wild bee communities. Annu. Rev. Entomol. 65, 39–56 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Requier, F. & Leonhardt, S. D. Beyond flowers: Including non-floral resources in bee conservation schemes. J. Insect Conserv. 24, 5–16 (2020).

    Google Scholar 

  • Sinu, P. A. & Bronstein, J. L. Foraging preferences of leafcutter bees in three contrasting geographical zones. Divers. Distrib. 24, 621–628 (2018).

    Google Scholar 

  • Cecala, J. M. & Rankin, E. E. Pollinators and plant nurseries: How irrigation and pesticide treatment of native ornamental plants impact solitary bees. Proc. R. Soc. B Biol. Sci. 288, 20211287 (2021).

    CAS 

    Google Scholar 

  • Gonzalez, V. H., Gustafson, G. T. & Engel, M. S. Morphological phylogeny of Megachilini and the evolution of leaf-cutter behavior in bees (Hymenoptera: Megachilidae). J. Melittology 85, 1–123 (2019).

    Google Scholar 

  • Kambli̇, S. S. et al. M. S. Aiswarya, K. Manoj, S. Varma, G. Asha, T. P. Rajesh, P. A. Sinu, Leaf foraging sources of leafcutter bees in a tropical environment: Implications for conservation. Apidologie 48, 473–482 (2017).

  • Ascher, J. S. & Pickering, J. Discover Life Bee Species Guide and World Checklist (Hymenoptera: Apoidea: Anthophila) (2019).

  • McCabe, L. M., Aslan, S. E. & Cobb, N. S. Decreased bee emergence along an elevation gradient: implications for climate change revealed by a transplant experiment. Ecology 103, e03598 (2021).

    PubMed 

    Google Scholar 

  • Pitts-Singer, T. L. & Cane, J. H. The Alfalfa leafcutting bee, Megachile rotundata: The worlds most intensively managed solitary bee. Annu. Rev. Entomol. 56, 221–237 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • MacIvor, J. S. & Packer, L. “Bee hotels” as tools for native pollinator conservation: A premature verdict?. PLoS ONE 10, e0122126 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Maclvor, J. S. DNA barcoding to identify leaf preference of leafcutting bees. R. Soc. Open Sci. 3, 150623 (2016).

    ADS 

    Google Scholar 

  • Wissemann, V. & Ritz, C. M. The genus Rosa (Rosoideae, Rosaceae) revisited: Molecular analysis of nrITS-1 and atpBrbcL intergenic spacer (IGS) versus conventional taxonomy. Botanical J. Linn. Soc. 147, 275–290 (2005).

    Google Scholar 

  • Wang, G. Study on the history of Chinese roses from ancient works and images. Acta Hort. 751, 347–356 (2007).

    Google Scholar 

  • Nybom, H. & Werlemark, G. Realizing the potential of health-promoting rosehips from dogroses (Rosa sect. Caninae). Curr. Bioact. Compd. 13, 3–17 (2016).

    Google Scholar 

  • Chang, Y. Z., Chen, H. M. & Qi, R. S. Ornamental pest—studies on leafcutting bees Megachile subtranquilla Yasumatsu. Acta Agriculturae Universitatis Pekinensis 15, 208–213 (1989).

    Google Scholar 

  • Stroom, K., Fetzer, J. & Krischik, V. Insect Pests of Roses. 1–12 (Minnesota Extension Service, University of Minnesota, 1997).

  • Knox, G. W., Paret, M. & Mizell, R. F. III. Pests of roses in Florida (2008).

  • Hayward, A. et al. The leafcutter bee, Megachile rotundata, is more sensitive to N-cyanoamidine neonicotinoid and butenolide insecticides than other managed bees. Nat. Ecol. Evol. 3, 1521–1524 (2019).

    PubMed 

    Google Scholar 

  • Fox, J. et al. Package ‘car’, Vol. 16, (R Foundation for Statistical Computing, 2012).

  • K. Barton, Package Multi-Model Inference (MuMIn). https://cran.r-project.org/web/packages/MuMIn/MuMIn.pdf (2013).

  • Hartig, F. & Hartig M. F. Package ‘DHARMa’:R package (2017).

  • R Core Team. R: A Language and Environment for Statistical Computing https://www.R-project.org/ (R Foundation for Statistical Computing, 2021).

  • Boff, S., Raizer, J. & Lupi, D. Environmental display can buffer the effect of pesticides on solitary bees. Insects. 11, 1–15 (2020).

    Google Scholar 

  • Cameron, S. A. et al. Patterns of widespread decline in North American bumble bees. Proc. Natl. Acad. Sci. USA. 108, 662–667 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cameron, S. A. & Sadd, B. M. Global trends in bumble bee health. Annu. Rev. Entomol. 65, 209–232 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Kopit, A. M. & Pitts-Singer, T. L. Routes of pesticide exposure in solitary, cavity-nesting bees. Environ. Entomol. 47, 499–510 (2018).

    CAS 

    Google Scholar 

  • Pitts-Singer, T. L. & Barbour, J. D. Effects of residual novaluron on reproduction in alfalfa leafcutting bees, Megachile rotundata F. (Megachilidae). Pest Manag. Sci. 73, 153–159 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • McKinney, M. L. Urbanization, biodiversity, and conservation. Bioscience 52, 883–890 (2002).

    Google Scholar 

  • Baldock, K. C. R. et al. A systems approach reveals urban pollinator hotspots and conservation opportunities. Nat. Ecol. Evol. 3, 363–373 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Choate, B. A., Hickman, P. L. & Moretti, E. A. Wild bee species abundance and richness across an urban–rural gradient. J. Insect Conserv. 22, 391–403 (2018).

    Google Scholar 

  • Theodorou, P. et al. Pollination services enhanced with urbanization despite increasing pollinator parasitism. Proc. R. Soc. B Biol. Sci. 283, 20160561 (2016).

    Google Scholar 

  • Theodorou, P. et al. Urban areas as hotspots for bees and pollination but not a panacea for all insects. Nat. Commun. 11, 1–13 (2020).

    Google Scholar 

  • Rocha-Filho, L. C., Martins, A. C. & Marchi, P. Notes on a nest of Megachile (Moureapis) apicipennis Schrottky (Megachilidae) constructed in an abandoned gallery of Xylocopa frontalis (Olivier) (Apidae). Sociobiology 64, 442–450 (2017).

    Google Scholar 

  • Sheffield, C. S. Unusual nesting behavior in Megachile (Eutricharaea) rotundata (Hymenoptera: Megachilidae). J. Melittol. 69, 1–6 (2017).

    Google Scholar 

  • Krischik, V., Rogers, M., Gupta, G. & Varshney, A. Soil-applied imidacloprid translocates to ornamental flowers and reduces survival of adult Coleomegilla maculata, Harmonia axyridis, and Hippodamia convergens lady beetles, and larval Danaus plexippus and Vanessa cardui butterflies. PLoS ONE 10, e0119133 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Senapathi, D. et al. The impact of over 80 years of land cover changes on bee and wasp pollinator communities in England. Proc. R. Soc. B Biol. Sci. 282, 20150294 (2015).

    Google Scholar 

  • Potts, S. G. et al. Role of nesting resources in organising diverse bee communities in a Mediterranean landscape. Ecol. Entomol. 30, 78–85 (2005).

    Google Scholar 

  • Acar, C., Acar, H. & Eroǧlu, E. Evaluation of ornamental plant resources to urban biodiversity and cultural changing: A case study of residential landscapes in Trabzon city (Turkey). Build. Environ. 42, 218–229 (2007).

    Google Scholar 

  • Wang, H. F., Qureshi, S., Knapp, S., Friedman, C. R. & Hubacek, K. A basic assessment of residential plant diversity and its ecosystem services and disservices in Beijing, China. Appl. Geogr. 64, 121–131 (2015).

    Google Scholar 

  • Pergl, J. et al. Dark side of the fence: ornamental plants as a source of wildgrowing flora in the Czech Republic. Preslia 88, 163–184 (2016).

    Google Scholar 

  • Avolio, M. et al. Urban plant diversity in Los Angeles, California: Species and functional type turnover in cultivated landscapes. Plants People Planet. 2, 144–156 (2020).

    Google Scholar 

  • Orr, M. C. et al. Global patterns and drivers of bee distribution. Curr. Biol. 31, 451–458 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Sinu, P. A., Kuriakose, G. & Shivanna, K. R. Is the bumblebee (Bombus haemorrhoidalis) the only pollinator of large cardamom in central Himalayas, India?. Apidologie 42, 690–695 (2012).

    Google Scholar 

  • Veereshkumar, V. V. & Gupta, A. Parasitisation of leaf-cutter bees (Megachilidae: Apoidea) by Melittobia. Entomon 40, 105–112 (2015).

    Google Scholar 

  • Cecala, J. M. & Wilson Rankin, E. E. Petals and leaves: Quantifying the use of nest building materials by the world’s most valuable solitary bee. Ecology 103, e03584 (2021).

    PubMed 

    Google Scholar 

  • Soh, E. J. Y., Soh, Z. W. W., Ascher, J. S. & Tan, H. T. W. Diversity of plants with leaves cut by bees of the genus Megachile in Singapore. Nat. Singap. 12, 63–74 (2019).

    Google Scholar 

  • MacIvor, J. S. & Moore, A. E. Bees collect polyurethane and polyethylene plastics as novel nest materials. Ecosphere 4, 155 (2013).

    Google Scholar 

  • Allasino, M. L., Marrero, H. J., Dorado, J. & Torretta, J. P. Scientific note: First global report of a bee nest built only with plastic. Apidologie 50, 230–233 (2019).

    Google Scholar 


  • Source: Ecology - nature.com

    Ocean microbes get their diet through a surprising mix of sources, study finds

    New materials could enable longer-lasting implantable batteries