Potts, S. G. et al. (eds.). IPBES: The Assessment Report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on Pollinators, Pollination and Food Production (Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, Bonn, Germany) (2016).
Potts, S. G. et al. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 25, 345–353 (2010).
Google Scholar
Goulson, D., Nicholls, E., Botías, C. & Rotheray, E. L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347, 1255957 (2015).
Google Scholar
Majewska, A. A. & Altizer, S. Planting gardens to support insect pollinators. Conserv. Biol. 34, 15–25 (2020).
Google Scholar
Image, M. et al. Does agri-environment scheme participation in England increase pollinator populations and crop pollination services?. Agric. Ecosyst. Environ. 325, 107755 (2022).
Vaissière, B., Freitas, B. M. & Gemmill-Herren, B. Protocol to Detect and Assess Pollination Deficits in Crops: A Handbook for Its Use (FAO, 2011).
Archer, C. R., Pirk, C. W. W., Carvalheiro, L. G. & Nicolson, S. W. Economic and ecological implications of geographic bias in pollinator ecology in the light of pollinator declines. Oikos 123, 401–407 (2014).
M’Gonigle, L. K., Ponisio, L. C., Cutler, K. & Kremen, C. Habitat restoration promotes pollinator persistence and colonization in intensively managed agriculture. Ecol. Appl. 25, 1557–1565 (2015).
Google Scholar
Garbuzov, M. & Ratnieks, F. L. W. Listmania: The strengths and weaknesses of lists of garden plants to help pollinators. Bioscience 64, 1019–1026 (2014).
Garbuzov, M. & Ratnieks, F. L. W. Quantifying variation among garden plants in attractiveness to bees and other flower-visiting insects. Funct. Ecol. 28, 364–374 (2014).
Garbuzov, M., Alton, K. & Ratnieks, F. L. W. Most ornamental plants on sale in garden centres are unattractive to flower-visiting insects. PeerJ 5, e3066 (2017).
Google Scholar
Nichols, R. N., Goulson, D. & Holland, J. M. The best wildflowers for wild bees. J. Insect Conserv. 23, 819–830 (2019).
Harmon-Threatt, A. Influence of nesting characteristics on health of wild bee communities. Annu. Rev. Entomol. 65, 39–56 (2020).
Google Scholar
Requier, F. & Leonhardt, S. D. Beyond flowers: Including non-floral resources in bee conservation schemes. J. Insect Conserv. 24, 5–16 (2020).
Sinu, P. A. & Bronstein, J. L. Foraging preferences of leafcutter bees in three contrasting geographical zones. Divers. Distrib. 24, 621–628 (2018).
Cecala, J. M. & Rankin, E. E. Pollinators and plant nurseries: How irrigation and pesticide treatment of native ornamental plants impact solitary bees. Proc. R. Soc. B Biol. Sci. 288, 20211287 (2021).
Google Scholar
Gonzalez, V. H., Gustafson, G. T. & Engel, M. S. Morphological phylogeny of Megachilini and the evolution of leaf-cutter behavior in bees (Hymenoptera: Megachilidae). J. Melittology 85, 1–123 (2019).
Kambli̇, S. S. et al. M. S. Aiswarya, K. Manoj, S. Varma, G. Asha, T. P. Rajesh, P. A. Sinu, Leaf foraging sources of leafcutter bees in a tropical environment: Implications for conservation. Apidologie 48, 473–482 (2017).
Ascher, J. S. & Pickering, J. Discover Life Bee Species Guide and World Checklist (Hymenoptera: Apoidea: Anthophila) (2019).
McCabe, L. M., Aslan, S. E. & Cobb, N. S. Decreased bee emergence along an elevation gradient: implications for climate change revealed by a transplant experiment. Ecology 103, e03598 (2021).
Google Scholar
Pitts-Singer, T. L. & Cane, J. H. The Alfalfa leafcutting bee, Megachile rotundata: The worlds most intensively managed solitary bee. Annu. Rev. Entomol. 56, 221–237 (2011).
Google Scholar
MacIvor, J. S. & Packer, L. “Bee hotels” as tools for native pollinator conservation: A premature verdict?. PLoS ONE 10, e0122126 (2015).
Google Scholar
Maclvor, J. S. DNA barcoding to identify leaf preference of leafcutting bees. R. Soc. Open Sci. 3, 150623 (2016).
Google Scholar
Wissemann, V. & Ritz, C. M. The genus Rosa (Rosoideae, Rosaceae) revisited: Molecular analysis of nrITS-1 and atpB–rbcL intergenic spacer (IGS) versus conventional taxonomy. Botanical J. Linn. Soc. 147, 275–290 (2005).
Wang, G. Study on the history of Chinese roses from ancient works and images. Acta Hort. 751, 347–356 (2007).
Nybom, H. & Werlemark, G. Realizing the potential of health-promoting rosehips from dogroses (Rosa sect. Caninae). Curr. Bioact. Compd. 13, 3–17 (2016).
Chang, Y. Z., Chen, H. M. & Qi, R. S. Ornamental pest—studies on leafcutting bees Megachile subtranquilla Yasumatsu. Acta Agriculturae Universitatis Pekinensis 15, 208–213 (1989).
Stroom, K., Fetzer, J. & Krischik, V. Insect Pests of Roses. 1–12 (Minnesota Extension Service, University of Minnesota, 1997).
Knox, G. W., Paret, M. & Mizell, R. F. III. Pests of roses in Florida (2008).
Hayward, A. et al. The leafcutter bee, Megachile rotundata, is more sensitive to N-cyanoamidine neonicotinoid and butenolide insecticides than other managed bees. Nat. Ecol. Evol. 3, 1521–1524 (2019).
Google Scholar
Fox, J. et al. Package ‘car’, Vol. 16, (R Foundation for Statistical Computing, 2012).
K. Barton, Package Multi-Model Inference (MuMIn). https://cran.r-project.org/web/packages/MuMIn/MuMIn.pdf (2013).
Hartig, F. & Hartig M. F. Package ‘DHARMa’:R package (2017).
R Core Team. R: A Language and Environment for Statistical Computing https://www.R-project.org/ (R Foundation for Statistical Computing, 2021).
Boff, S., Raizer, J. & Lupi, D. Environmental display can buffer the effect of pesticides on solitary bees. Insects. 11, 1–15 (2020).
Cameron, S. A. et al. Patterns of widespread decline in North American bumble bees. Proc. Natl. Acad. Sci. USA. 108, 662–667 (2011).
Google Scholar
Cameron, S. A. & Sadd, B. M. Global trends in bumble bee health. Annu. Rev. Entomol. 65, 209–232 (2020).
Google Scholar
Kopit, A. M. & Pitts-Singer, T. L. Routes of pesticide exposure in solitary, cavity-nesting bees. Environ. Entomol. 47, 499–510 (2018).
Google Scholar
Pitts-Singer, T. L. & Barbour, J. D. Effects of residual novaluron on reproduction in alfalfa leafcutting bees, Megachile rotundata F. (Megachilidae). Pest Manag. Sci. 73, 153–159 (2017).
Google Scholar
McKinney, M. L. Urbanization, biodiversity, and conservation. Bioscience 52, 883–890 (2002).
Baldock, K. C. R. et al. A systems approach reveals urban pollinator hotspots and conservation opportunities. Nat. Ecol. Evol. 3, 363–373 (2019).
Google Scholar
Choate, B. A., Hickman, P. L. & Moretti, E. A. Wild bee species abundance and richness across an urban–rural gradient. J. Insect Conserv. 22, 391–403 (2018).
Theodorou, P. et al. Pollination services enhanced with urbanization despite increasing pollinator parasitism. Proc. R. Soc. B Biol. Sci. 283, 20160561 (2016).
Theodorou, P. et al. Urban areas as hotspots for bees and pollination but not a panacea for all insects. Nat. Commun. 11, 1–13 (2020).
Rocha-Filho, L. C., Martins, A. C. & Marchi, P. Notes on a nest of Megachile (Moureapis) apicipennis Schrottky (Megachilidae) constructed in an abandoned gallery of Xylocopa frontalis (Olivier) (Apidae). Sociobiology 64, 442–450 (2017).
Sheffield, C. S. Unusual nesting behavior in Megachile (Eutricharaea) rotundata (Hymenoptera: Megachilidae). J. Melittol. 69, 1–6 (2017).
Krischik, V., Rogers, M., Gupta, G. & Varshney, A. Soil-applied imidacloprid translocates to ornamental flowers and reduces survival of adult Coleomegilla maculata, Harmonia axyridis, and Hippodamia convergens lady beetles, and larval Danaus plexippus and Vanessa cardui butterflies. PLoS ONE 10, e0119133 (2015).
Google Scholar
Senapathi, D. et al. The impact of over 80 years of land cover changes on bee and wasp pollinator communities in England. Proc. R. Soc. B Biol. Sci. 282, 20150294 (2015).
Potts, S. G. et al. Role of nesting resources in organising diverse bee communities in a Mediterranean landscape. Ecol. Entomol. 30, 78–85 (2005).
Acar, C., Acar, H. & Eroǧlu, E. Evaluation of ornamental plant resources to urban biodiversity and cultural changing: A case study of residential landscapes in Trabzon city (Turkey). Build. Environ. 42, 218–229 (2007).
Wang, H. F., Qureshi, S., Knapp, S., Friedman, C. R. & Hubacek, K. A basic assessment of residential plant diversity and its ecosystem services and disservices in Beijing, China. Appl. Geogr. 64, 121–131 (2015).
Pergl, J. et al. Dark side of the fence: ornamental plants as a source of wildgrowing flora in the Czech Republic. Preslia 88, 163–184 (2016).
Avolio, M. et al. Urban plant diversity in Los Angeles, California: Species and functional type turnover in cultivated landscapes. Plants People Planet. 2, 144–156 (2020).
Orr, M. C. et al. Global patterns and drivers of bee distribution. Curr. Biol. 31, 451–458 (2021).
Google Scholar
Sinu, P. A., Kuriakose, G. & Shivanna, K. R. Is the bumblebee (Bombus haemorrhoidalis) the only pollinator of large cardamom in central Himalayas, India?. Apidologie 42, 690–695 (2012).
Veereshkumar, V. V. & Gupta, A. Parasitisation of leaf-cutter bees (Megachilidae: Apoidea) by Melittobia. Entomon 40, 105–112 (2015).
Cecala, J. M. & Wilson Rankin, E. E. Petals and leaves: Quantifying the use of nest building materials by the world’s most valuable solitary bee. Ecology 103, e03584 (2021).
Google Scholar
Soh, E. J. Y., Soh, Z. W. W., Ascher, J. S. & Tan, H. T. W. Diversity of plants with leaves cut by bees of the genus Megachile in Singapore. Nat. Singap. 12, 63–74 (2019).
MacIvor, J. S. & Moore, A. E. Bees collect polyurethane and polyethylene plastics as novel nest materials. Ecosphere 4, 155 (2013).
Allasino, M. L., Marrero, H. J., Dorado, J. & Torretta, J. P. Scientific note: First global report of a bee nest built only with plastic. Apidologie 50, 230–233 (2019).
Source: Ecology - nature.com