in

Paleoreconstructions of ciliate communities reveal long-term ecological changes in temperate lakes

  • Schindler, D. W. Lakes as sentinels and integrators for the effects of climate change on watersheds, airsheds, and landscapes. Limnol. Oceanogr. 54, 2349–2358 (2009).

    CAS 
    Article 

    Google Scholar 

  • Steffen, W., Crutzen, P. J. & McNeill, J. R. The Anthropocene: are humans now overwhelming the great forces of nature. AMBIO J. Hum. Environ. 36, 614–621 (2007).

  • Steffen, W., Broadgate, W., Deutsch, L., Gaffney, O. & Ludwig, C. The trajectory of the anthropocene: The great acceleration. Anthropoc. Rev. 2, 81–98 (2015).

    Article 

    Google Scholar 

  • Richardson, D. et al. Transparency, geomorphology and mixing regime explain variability in trends in lake temperature and stratification across Northeastern North America (1975–2014). Water 9, 442 (2017).

    Article 

    Google Scholar 

  • Jane, S. F. et al. Widespread deoxygenation of temperate lakes. Nature 594, 66–70 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Adrian, R. et al. Lakes as sentinels of climate change. Limnol. Oceanogr. 54, 2283–2297 (2009).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Smol, J. P. Pollution of lakes and rivers: a paleoenvironmental perspective. (Blackwell Pub, 2008).

  • Bennion, H., Simpson, G. L. & Goldsmith, B. J. Assessing degradation and recovery pathways in lakes impacted by eutrophication using the sediment record. Front. Ecol. Evol. 3, (2015).

  • Arseneau, K. M. A., Driscoll, C. T., Cummings, C. M., Pope, G. & Cumming, B. F. Adirondack (NY, USA) reference lakes show a pronounced shift in chrysophyte species composition since ca. 1900. J. Paleolimnol. 56, 349–364 (2016).

  • Ellegaard, M. et al. Dead or alive: sediment DNA archives as tools for tracking aquatic evolution and adaptation. Commun. Biol. 3, 169 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Coolen, M. J. L. et al. Evolution of the plankton paleome in the Black Sea from the Deglacial to Anthropocene. Proc. Natl. Acad. Sci. 110, 8609–8614 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Capo, E., Domaizon, I., Maier, D., Debroas, D. & Bigler, C. To what extent is the DNA of microbial eukaryotes modified during burying into lake sediments? A repeat-coring approach on annually laminated sediments. J. Paleolimnol. 58, 479–495 (2017).

    Article 

    Google Scholar 

  • Capo, E. et al. Tracking a century of changes in microbial eukaryotic diversity in lakes driven by nutrient enrichment and climate warming: Long-term dynamics of microbial eukaryotes. Environ. Microbiol. 19, 2873–2892 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Capo, E. et al. Lake sedimentary DNA research on past terrestrial and aquatic biodiversity: Overview and recommendations. Quaternary 4, 6 (2021).

    Article 

    Google Scholar 

  • Domaizon, I., Winegardner, A., Capo, E., Gauthier, J. & Gregory-Eaves, I. DNA-based methods in paleolimnology: New opportunities for investigating long-term dynamics of lacustrine biodiversity. J. Paleolimnol. 58, 1–21 (2017).

    Article 

    Google Scholar 

  • Domaizon, I. et al. DNA from lake sediments reveals the long-term dynamics and diversity of Synechococcus assemblages. Biogeosciences 10, 3817–3838 (2013).

    Article 

    Google Scholar 

  • Zhang, H. et al. Climate and nutrient-driven regime shifts of cyanobacterial communities in low-latitude plateau lakes. Environ. Sci. Technol. 55, 3408–3418 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Keck, F. et al. Assessing the response of micro-eukaryotic diversity to the Great acceleration using lake sedimentary DNA. Nat. Commun. 11, 3831 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Cockrell, C. The value of microorganisms. Environ. Ethics 27, 375–390 (2005).

    Article 

    Google Scholar 

  • Sagova-Mareckova, M. et al. Expanding ecological assessment by integrating microorganisms into routine freshwater biomonitoring. Water Res. 191, 116767 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Likens, G. Plankton of Inland Waters a derivative of Encyclopedia of Inland Waters. in (Elsevier Science & Technology Books, 2010).

  • Weisse, T. Functional diversity of aquatic ciliates. Eur. J. Protistol. 61, 331–358 (2017).

    PubMed 
    Article 

    Google Scholar 

  • Finlay, B. J. & Esteban, G. F. Freshwater protozoa: Biodiversity and ecological function. Biodivers. Conserv. 7, 1163–1186 (1998).

    Article 

    Google Scholar 

  • Stoecker, D. K. & Lavrentyev, P. J. Mixotrophic plankton in the polar seas: A pan-arctic review. Front. Mar. Sci. 5, 292 (2018).

    Article 

    Google Scholar 

  • Bick, H. Ciliated protozoa : an illustrated guide to the species used as biological indicators in freshwater biology. (World Health Organisation, 1972).

  • Curds, C. R. An illustrated key to the British Freshwater Ciliated Protozoa commonly found in activated sludge. (Her Majesty’s Stationary Office, 1969).

  • Pitsch, G. et al. Seasonality of planktonic freshwater ciliates: Are analyses based on V9 regions of the 18S rRNA gene correlated with morphospecies counts?. Front. Microbiol. 10, 248 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lynn, D. H. The Ciliated Protozoa. (Springer, 2010).

  • Adl, S. M. et al. The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J. Eukaryot. Microbiol. 52, 399–451 (2005).

    PubMed 
    Article 

    Google Scholar 

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ibrahim, A. et al. Anthropogenic impact on the historical phytoplankton community of Lake Constance reconstructed by multimarker analysis of sediment-core environmental DNA. Mol. Ecol. 30, 3040–3056 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Mosher, J. J. & Findlay, R. H. Direct and indirect influence of parental bedrock on streambed microbial community structure in forested streams. Appl. Environ. Microbiol. 77, 7681–7688 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bennion, H., Monteith, D. & Appleby, P. Temporal and geographical variation in lake trophic status in the English Lake District: evidence from (sub)fossil diatoms and aquatic macrophytes. Freshw. Biol. 45, 394–412 (2000).

    Article 

    Google Scholar 

  • Hornung, M. et al. The sensitivity of surface waters of Great Britain to acidification predicted from catchment characteristics. Environ. Pollut. 87, 207–214 (1995).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gámez-Virués, S. et al. Landscape simplification filters species traits and drives biotic homogenization. Nat. Commun. 6, 8568 (2015).

    PubMed 
    Article 

    Google Scholar 

  • Nielsen, T. F., Sand-Jensen, K., Dornelas, M. & Bruun, H. H. More is less: Net gain in species richness, but biotic homogenization over 140 years. Ecol. Lett. 22, 1650–1657 (2019).

    Article 

    Google Scholar 

  • Magurran, A. E., Dornelas, M., Moyes, F., Gotelli, N. J. & McGill, B. Rapid biotic homogenization of marine fish assemblages. Nat. Commun. 6, 8405 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Petsch, D. K. Causes and consequences of biotic homogenization in freshwater ecosystems: Biotic homogenization of freshwater systems. Internat. Rev. Hydrobiol. 101, 113–122 (2016).

    Article 

    Google Scholar 

  • Perga, M.-E. et al. High-resolution paleolimnology opens new management perspectives for lakes adaptation to climate warming. Front. Ecol. Evol. 3, (2015).

  • Rioual, P. Limnological characteristics of 25 lakes of the French Massif Central. Ann. Limnol. Int. J. Lim. 38, 311–327 (2002).

    Article 

    Google Scholar 

  • Belle, S. et al. Increase in benthic trophic reliance on methane in 14 French lakes during the Anthropocene. Freshw. Biol. 61, 1105–1118 (2016).

    CAS 
    Article 

    Google Scholar 

  • Télesphore, S.-N. Population dynamics of autotrophic picoplankton in relation to environmental factors in a productive lake. Aquat. Sci. 57, 91–105 (1995).

    Article 

    Google Scholar 

  • Esteban, G. F., Fenchel, T. & Finlay, B. J. Mixotrophy in Ciliates. Protist 161, 621–641 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Woelfl, S. & Geller, W. Chlorella-bearing ciliates dominate in an oligotrophic North Patagonian lake (Lake Pirehueico, Chile). Freshw. Biol. 47, 231–242 (2002).

    Article 

    Google Scholar 

  • Berninger, U.-G., Finlay, B. J. & Canter, H. M. The spatial distribution and ecology of Zoochlorellae-bearing ciliates in a productive pond. J. Protozool. 33, 557–563 (1986).

    Article 

    Google Scholar 

  • Haraguchi, L., Jakobsen, H. H., Lundholm, N. & Carstensen, J. Phytoplankton community dynamic: A driver for ciliate trophic strategies. Front. Mar. Sci. 5, 272 (2018).

    Article 

    Google Scholar 

  • Staehr, P. A., Testa, J. & Carstensen, J. Decadal changes in water quality and net productivity of a shallow danish estuary following significant nutrient reductions. Estuaries Coasts 40, 63–79 (2017).

    CAS 
    Article 

    Google Scholar 

  • Jeppesen, E., Pierson, D. & Jennings, E. Effect of extreme climate events on lake ecosystems. Water 13, 282 (2021).

    Article 

    Google Scholar 

  • Sonntag, B., Strüder-Kypke, M. C. & Summerer, M. Uroleptus willii nov. sp., a euplanktonic freshwater ciliate (Dorsomarginalia, Spirotrichea, Ciliophora) with algal symbionts: morphological description including phylogenetic data of the small subunit rRNA gene sequence and ecological notes. Denisia 23, 279–288 (2008).

  • Mitra, A. et al. The role of mixotrophic protists in the biological carbon pump. Biogeosciences 11, 995–1005 (2014).

    Article 

    Google Scholar 

  • Munawar, M., Niblock, H., Fitzpatrick, M. & Lorimer, J. Ciliate ecology in the eutrophic Bay of Quinte, Lake Ontario: Community structure and feeding characteristics. Aquat. Ecosyst. Health Manage. 23, 35–44 (2020).

    Article 

    Google Scholar 

  • Carrick, H. J. An under-appreciated component of biodiversity in plankton communities: The role of protozoa in Lake Michigan (a case study). Hydrobiologia 551, 17–32 (2005).

    Article 

    Google Scholar 

  • Beaver, J. R. & Crisman, T. L. The role of ciliated protozoa in pelagic freshwater ecosystems. Microb. Ecol. 17, 111–136 (1989).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Carrias, J.-F., Thouvenot, A., Amblard, C. & Sime-Ngando, T. Dynamics and growth estimates of planktonic protists during early spring in Lake Pavin France. Aquat. Microb. Ecol. 24, 163–174 (2001).

    Article 

    Google Scholar 

  • Sherr, E. B. & Sherr, B. F. Significance of predation by protists in aquatic microbial food webs. Antonie Van Leeuwenhoek 81, 293–308 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Van Wichelen, J. et al. Planktonic ciliate community structure in shallow lakes of lowland Western Europe. Eur. J. Protistol. 49, 538–551 (2013).

    PubMed 
    Article 

    Google Scholar 

  • Posch, T. et al. Network of interactions between ciliates and phytoplankton during spring. Front. Microbiol. 6, (2015).

  • DeNicola, D. M. & Kelly, M. Role of periphyton in ecological assessment of lakes. Freshw. Sci. 33, 619–638 (2014).

    Article 

    Google Scholar 

  • Hao, B. et al. Warming effects on periphyton community and abundance in different seasons are influenced by nutrient state and plant type: A shallow lake mesocosm study. Front. Plant Sci. 11, 404 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Schindler, D. E. Warmer climate squeezes aquatic predators out of their preferred habitat. Proc. Natl. Acad. Sci. USA 114, 9764–9765 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Millet, L. et al. Diagnostic fonctionnel des systèmes lacustres de Gérardmer, Longemer et RetournemerUne approche combinée limnologie/paléolimnologie. 38 (2015).

  • Sabart, M. Projet DIVERSITOX (DIVERSIté des cyanoTOXines dans différents milieux aquatiques ligériens et relation avec la biodiversité microbienne). 28 (2018).

  • Jenny, J.-P. et al. A spatiotemporal investigation of varved sediments highlights the dynamics of hypolimnetic hypoxia in a large hard-water lake over the last 150 years. Limnol. Oceanogr. 58, 1395–1408 (2013).

    CAS 
    Article 

    Google Scholar 

  • Nogués-Bravo, D., Araújo, M. B., Romdal, T. & Rahbek, C. Scale effects and human impact on the elevational species richness gradients. Nature 453, 216–219 (2008).

    PubMed 
    Article 

    Google Scholar 

  • Hayden, C. J. & Beman, J. M. Microbial diversity and community structure along a lake elevation gradient in Yosemite National Park, California, USA: Lake microbial ecology along an elevation gradient. Environ. Microbiol. 18, 1782–1791 (2016).

    PubMed 
    Article 

    Google Scholar 

  • Catalan, J. et al. Global change revealed by palaeolimnological records from remote lakes: A review. J. Paleolimnol. 49, 513–535 (2013).

    Article 

    Google Scholar 

  • Novotny, A., Zamora-Terol, S. & Winder, M. DNA metabarcoding reveals trophic niche diversity of micro and mesozooplankton species. Proc. R. Soc. B. 288, 20210908 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lei, Y., Stumm, K., Wickham, S. A. & Berninger, U. Distributions and biomass of benthic ciliates, foraminifera and amoeboid protists in marine, brackish, and freshwater sediments. J. Eukaryot. Microbiol. 61, 493–508 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Foissner, W. & Berger, H. A user-friendly guide to the ciliates (Protozoa, Ciliophora) commonly used by hydrobiologists as bioindicators in rivers, lakes, and waste waters, with notes on their ecology. Freshw. Biol. 35, 375–482 (1996).

    Article 

    Google Scholar 

  • Posch, T. et al. Size selective feeding in Cyclidium glaucoma (Ciliophora, Scuticociliatida) and its effects on bacterial community structure: A study from a continuous cultivation system. Microb. Ecol. 42, 217–227 (2001).

    PubMed 
    Article 

    Google Scholar 

  • Pawlowski, J. et al. The future of biotic indices in the ecogenomic era: Integrating (e)DNA metabarcoding in biological assessment of aquatic ecosystems. Sci. Total Environ. 637–638, 1295–1310 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Ogram, Andrew., Sayler, G. S., Gustin, Denise. & Lewis, R. J. DNA adsorption to soils and sediments. Environ. Sci. Technol. 22, 982–984 (1988).

  • Parducci, L. et al. Shotgun environmental DNA, pollen, and macrofossil analysis of lateglacial lake sediments from southern Sweden. Front. Ecol. Evol. 7, 189 (2019).

    Article 

    Google Scholar 

  • Pedersen, M. W. et al. Ancient and modern environmental DNA. Phil. Trans. R. Soc. B 370, 20130383 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Epp, L. S. A global perspective for biodiversity history with ancient environmental DNA. Mol. Ecol. 28, 2456–2458 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Puitika, T., Kasahara, Y., Miyoshi, N., Sato, Y. & Shimano, S. A taxon-specific oligonucleotide primer set for PCR-based detection of soil ciliate. Microb. Environ. 22, 78–81 (2007).

    Article 

    Google Scholar 

  • Dopheide, A., Lear, G., Stott, R. & Lewis, G. Molecular characterization of ciliate diversity in stream biofilms. Appl. Environ. Microbiol. 74, 1740–1747 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Mangot, J.-F. et al. Short-term dynamics of diversity patterns: evidence of continual reassembly within lacustrine small eukaryotes. Environ. Microbiol. 15, 1745–1758 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Schloss, P. D. et al. Introducing mothur: open-source, platform independent, community-supported software for describing and comparing microbial communities. AEM 75, 7537–7541 (2009).

    CAS 
    Article 

    Google Scholar 

  • Vaulot, D. pr2database/pr2database: PR2 version 4.12.0. (Zenodo, 2019). 10.5281/ZENODO.3362765.

  • Stoeck, T. et al. A morphogenetic survey on ciliate plankton from a mountain lake pinpoints the necessity of lineage-specific barcode markers in microbial ecology. Environ. Microbiol. 16, 430–444 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gao, F. et al. The all-data-based evolutionary hypothesis of ciliated protists with a revised classification of the Phylum Ciliophora (Eukaryota, Alveolata). Sci. Rep. 6, 24874 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Foissner, W., Chao, A. & Katz, L. A. Diversity and geographic distribution of ciliates (Protista: Ciliophora). Biodivers Conserv 17, 345–363 (2008).

    Article 

    Google Scholar 

  • R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2020).

  • Oksanen, J. et al. vegan: Community Ecology PackageJari. (2020).

  • Therneau, T. & Atkinson, B. rpart: Recursive Partitioning and Regression Trees. (2019).

  • Shapiro, S. S. & Wilk, M. B. An analysis of variance test for normality (complete samples). Biometrika 52, 591–611 (1965).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • Conover, W. J., Johnson, M. E. & Johnson, M. M. A comparative study of tests for homogeneity of variances, with applications to the outer continental shelf bidding data. Technometrics 23, 351–361 (1981).

    Article 

    Google Scholar 

  • Kruskal, W. H. & Wallis, W. A. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 48, 907–911 (1952).

    MATH 
    Article 

    Google Scholar 

  • Benjamini, Y. & Hochberg, Y. Controlling the False Discovery Rate: a practical and powerful approach to multiple testing. J. Roy. Stat. Soc.: Ser. B (Methodol.) 57, 289–300 (1995).

    MathSciNet 
    MATH 

    Google Scholar 

  • Clarke, K. R. & Gorley, R. N. PRIMER v6: User manual/tutorial. (PRIMER-E, 2006).

  • QGIS Development Team. QGIS Geographic Information System. (QGIS Association, 2021).

  • Wickham, H. ggplot2: elegant graphics for dada analysis. (Springer-Verlag, 2016).

  • Pedersen, T. L. & Crameri, F. scico: colour palettes based on the scientific colour-maps. (2020).

  • Crameri, F., Shephard, G. E. & Heron, P. J. The misuse of colour in science communication. Nat. Commun. 11, 5444 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Unravelling seasonal trends in coastal marine heatwave metrics across global biogeographical realms

    MIT Climate “Plug-In” highlights first year of progress on MIT’s climate plan