in

Parallel evolution of urban–rural clines in melanism in a widespread mammal

  • 1.

    Angel, S. et al. The dimensions of global urban expansion: Estimates and projections for all countries, 2000–2050. Prog. Plan. 75, 53–107 (2011).

    Google Scholar 

  • 2.

    Grimm, N. B. et al. Global change and the ecology of cities. Science 319, 756–760 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 3.

    McKinney, M. L. Urbanization as a major cause of biotic homogenization. Biol. Conserv. 127, 247–260 (2006).

    Google Scholar 

  • 4.

    Groffman, P. M. et al. Ecological homogenization of urban USA. Front. Ecol. Environ. 12, 74–81 (2014).

    Google Scholar 

  • 5.

    Bolnick, D. I. et al. (Non)Parallel evolution. Annu. Rev. Ecol. Evol. Syst. 49, 303–330 (2018).

    Google Scholar 

  • 6.

    Donihue, C. M. & Lambert, M. R. Adaptive evolution in urban ecosystems. Ambio 44, 194–203 (2015).

    PubMed 

    Google Scholar 

  • 7.

    Johnson, M. T. J. & Munshi-South, J. Evolution of life in urban environments. Science 358, eaam8327 (2017).

    Google Scholar 

  • 8.

    Rivkin, L. R. et al. A roadmap for urban evolutionary ecology. Evol. Appl. 12, 384–398 (2019).

    PubMed 

    Google Scholar 

  • 9.

    Santangelo, J. S. et al. Urban environments as a framework to study parallel evolution. In Urban Evolutionary Biology (eds Szulkin, M. et al.) (Oxford University Press, 2020).

    Google Scholar 

  • 10.

    Cosentino, B. J., Moore, J.-D., Karraker, N. E., Ouellet, M. & Gibbs, J. P. Evolutionary response to global change: Climate and land use interact to shape color polymorphism in a woodland salamander. Ecol. Evol. 7, 5426–5434 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Koprowski, J. L., Munroe, K. E. & Edelman, A. J. Gray not grey: Ecology of Sciurus carolinensis in their native range in North America. In Grey Squirrels: Ecology and Management of an Invasive Species in Europe (eds Shuttleworth, C. M. et al.) (European Squirrel Initiative, 2016).

    Google Scholar 

  • 12.

    McRobie, H., Thomas, A. & Kelly, J. The genetic basis of melanism in the gray squirrel (Sciurus carolinensis). J. Hered. 100, 709–714 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • 13.

    Gibbs, J. P., Buff, M. F. & Cosentino, B. J. The biological system: Urban wildlife, adaptation and evolution: Urbanization as a driver of contemporary evolution in gray squirrels (Sciurus carolinensis). In Understanding Urban Ecology (eds Hall, M. A. & Balogh, S.) (Springer, 2019).

    Google Scholar 

  • 14.

    Lehtinen, R. M. et al. Dispatches form the neighborhood watch: Using citizen science and field survey data to document color morph frequency in space and time. Ecol. Evol. 10, 1526–1538 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    Perlut, N. G. Long-distance dispersal by eastern gray squirrels in suburban habitats. Northeast. Nat. 27, 195–200 (2020).

    Google Scholar 

  • 16.

    Goheen, J. R., Swihart, R. K., Gehring, T. M. & Miller, M. S. Forces structuring tree squirrel communities in landscapes fragmented by agriculture: Species differences in perceptions of forest connectivity and carrying capacity. Oikos 102, 95–103 (2003).

    Google Scholar 

  • 17.

    Ducharme, M. B., Larochelle, J. & Richard, D. Thermogenic capacity in gray and black morphs of the gray squirrel, Sciurus carolinensis. Physiol. Zool. 62, 1273–1292 (1989).

    Google Scholar 

  • 18.

    Linnen, C. R. & Hoekstra, H. E. Measuring natural selection on genotypes and phenotypes in the wild. Cold Spring Harb. Symp. Quant. Biol. 74, 155–168 (2010).

    PubMed Central 

    Google Scholar 

  • 19.

    Campbell-Staton, S. C. et al. Parallel selection on thermal physiology facilitates repeated adaptation of city lizards to urban heat islands. Nat. Ecol. Evol. 4, 652–658 (2020).

    PubMed 

    Google Scholar 

  • 20.

    Reid, N. M. et al. The genomic landscape of rapid repeated evolutionary adaptation to toxic pollution in wild fish. Science 354, 1305–1308 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Bowers, M. A. & Breland, B. Foraging of gray squirrels on an urban-rural gradient: Use of the GUD to assess anthropogenic impact. Ecol. Appl. 6, 1135–1142 (1996).

    Google Scholar 

  • 22.

    McCleery, R. A., Lopez, R. R., Silvy, N. J. & Gallant, D. L. Fox squirrel survival in urban and rural environments. J. Wildl. Manage. 72, 133–137 (2008).

    Google Scholar 

  • 23.

    Benson, E. The urbanization of the eastern gray squirrel in the United States. J. Am. Hist. 100, 691–710 (2013).

    Google Scholar 

  • 24.

    Leveau, L. United colours of the city: A review about urbanization impact on animal colours. Austral Ecol. 46, 670–679 (2021).

    Google Scholar 

  • 25.

    Ducrest, A.-L., Keller, L. & Roulin, A. Pleiotropy in the melanocortin system, coloration, and behavioural syndromes. Trends Ecol. Evol. 23, 502–510 (2008).

    PubMed 

    Google Scholar 

  • 26.

    Stothart, M. R. & Newman, A. E. M. Shades of grey: Host phenotype dependent effect of urbanization on the bacterial microbiome of a wild mammal. Anim. Microbiome. 3, 46 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Vasemägi, A. The adaptive hypothesis of clinal variation revisited: Single-locus clines as a result of spatially restricted gene flow. Genetics 173, 2411–2414 (2006).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Merrick, M. J., Evans, K. L. & Bertolino, S. Urban grey squirrel ecology, associated impacts, and management challenges. In Grey Squirrels: Ecology and Management of an Invasive Species in Europe (eds Shuttleworth, C. M. et al.) (European Squirrel Initiative, 2016).

    Google Scholar 

  • 29.

    Chipman, R., Slate, D., Rupprecht, C. & Mendoza, M. Downside risk of wildlife translocation. In Towards the Elimination of Rabies in Eurasia (eds Dodet, B. et al.) (Dev. Biol Basel, Karger, 2008).

    Google Scholar 

  • 30.

    Allen, D. L. Michigan Fox Squirrel Management (Michigan Department of Conservation, 1943).

    Google Scholar 

  • 31.

    Schorger, A. W. Squirrels in early Wisconsin. Trans. Wis. Acad. Sci. Arts Lett. 39, 195–247 (1949).

    Google Scholar 

  • 32.

    Robertson, G. I. Distribution of Color Morphs of Sciurus carolinensis in Eastern North America (University of Western Ontario, 1973).

    Google Scholar 

  • 33.

    MacCleery, D. W. American Forests: A History of Resiliency and Recovery (Forest History Society, 2011).

    Google Scholar 

  • 34.

    Foster, D. R. et al. Wildlands and Woodlands: A Vision for the New England Landscape (Harvard University Press, 2010).

    Google Scholar 

  • 35.

    Thompson, R. T., Carpenter, D. N., Cogbill, C. V. & Foster, D. R. Four centuries of change in northeastern United States forests. PLoS ONE 8(9), e72540 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 36.

    Lambert, M. R. et al. Adaptive evolution in cities: Progress and misconceptions. Trends Ecol. Evol. 36, 239–257 (2021).

    PubMed 

    Google Scholar 

  • 37.

    Farquhar, D. N. Some Aspects of Thermoregulation as Related to the Geographic Distribution of the Northern Melanic Phase of the Grey Squirrel (York University, 1974).

    Google Scholar 

  • 38.

    Innes, S. & Lavigne, D. M. Comparative energetics of coat colour polymorphs in the eastern gray squirrel Sciurus carolinensis. Can. J. Zool. 57, 585–592 (1979).

    Google Scholar 

  • 39.

    Santangelo, J. S. et al. Predicting the strength of urban-rural clines in a Mendelian polymorphism along a latitudinal gradient. Evol. Lett. 4, 212–225 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 40.

    Fidino, M. et al. Landscape-scale differences among cities alter common species’ responses to urbanization. Ecol. Appl. 31, e02253 (2021).

    PubMed 

    Google Scholar 

  • 41.

    Dickinson, J. L., Zuckerberg, B. & Bonter, D. N. Citizen science as an ecological research tool: Challenges and benefits. Annu. Rev. Ecol. Evol. Syst. 41, 149–172 (2010).

    Google Scholar 

  • 42.

    Alberti, M. Global urban signatures of phenotypic change in animal and plant populations. Proc. Natl. Acad. Sci. U.S.A. 114, 8951–8956 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 43.

    United States Census Bureau. 2019 TIGER/Line Shapefiles (machine-readable data files) https://www2.census.gov/geo/tiger/TIGER2019/UAC/ (2019).

  • 44.

    XX. Statistics Canada. Population Centre Boundary File, Census year 2016 https://www150.statcan.gc.ca/n1/en/catalogue/92-166-X (2017).

  • 45.

    Aiello-Lammens, M. E. et al. spThin: An R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38, 541–545 (2015).

    Google Scholar 

  • 46.

    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. (2020).

  • 47.

    Brown de Colstoun, E. C. et al. Documentation for the Global Man-made Impervious Surface (GMIS) Dataset from Landsat (NASA Socioeconomic Data and Applications Center, 2017).

    Google Scholar 

  • 48.

    Steele, M. A. & Koprowski, J. L. North American Tree Squirrels (Smithsonian Books, 2001).

    Google Scholar 

  • 49.

    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 50.

    Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Google Scholar 

  • 51.

    Hijmans, R. L. raster: Geographic data analysis and modeling. R package version 3.3–13. https://CRAN.R-project.org/package=raster (2020).

  • 52.

    Baston, D. exactextractr: Fast extraction from raster datasets using polygons. R package version 0.5.1. https://CRAN.R-project.org/package=exactextractr (2020).

  • 53.

    Harrison, X. A. et al. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 6, e4794 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 54.

    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Google Scholar 

  • 55.

    Gelman, A. & Su, Y. arm: Data analysis using regression and multilevel/hierarchical models. R package version 1.11–2. https://CRAN.R-project.org/package=arm (2020).

  • 56.

    Gelman, A. & Hill, J. Data Analysis Using Regression and Multilevel/Hierarchical Models (Cambridge University Press, 2007).

    Google Scholar 

  • 57.

    Crase, B., Liedloff, A. C. & Wintle, B. A. A new method for dealing with residual spatial autocorrelation in species distribution models. Ecography 35, 879–888 (2012).

    Google Scholar 

  • 58.

    Bivand, R. S. & Wong, D. W. S. Comparing implementations of global and local indicators of spatial association. TEST 27, 716–748 (2018).

    MathSciNet 
    MATH 

    Google Scholar 

  • 59.

    Bardos, D. C., Guillera-Arroita, G. & Wintle, B. A. Valid auto-models for spatially autocorrelated occupancy and abundance data. Methods Ecol. Evol. 6, 1137–1149 (2015).

    Google Scholar 


  • Source: Ecology - nature.com

    Energizing communities in Africa

    Reducing methane emissions at landfills