Torsvik, V., Øvreås, L. & Thingstad, T. F. Prokaryotic diversity-magnitude, dynamics, and controlling factors. Science 296, 1064–1066 (2002).
Google Scholar
Kuang, J. et al. Predicting taxonomic and functional structure of microbial communities in acid mine drainage. ISME J. 10, 1527–1539 (2016).
Google Scholar
Mod, H. K. et al. Predicting spatial patterns of soil bacteria under current and future environmental conditions. ISME J. (2021).
Pace, N. R. A molecular view of microbial diversity and the biosphere. Science 276, 734–740 (1997).
Google Scholar
Violle, C., Reich, P. B., Pacala, S. W., Enquist, B. J. & Kattge, J. The emergence and promise of functional biogeography. Proc. Natl Acad. Sci. USA 111, 13690–13696 (2004).
Google Scholar
Green, J. L., Bohannan, B. J. & Whitaker, R. J. Microbial biogeography: from taxonomy to traits. Science 320, 1039–1043 (2008).
Google Scholar
Daly, R. A. et al. Viruses control dominant bacteria colonizing the terrestrial deep biosphere after hydraulic fracturing. Nat. Microbiol. 4, 352–361 (2019).
Google Scholar
Howard-Varona, C. et al. Phage-specific metabolic reprogramming of virocells. ISME J. 14, 881–895 (2020).
Google Scholar
Chevallereau, A., Pons, B. J., van Houte, S. & Westra, E. R. Interactions between bacterial and phage communities in natural environments. Nat. Rev. Microbiol. 20, 49–62 (2022).
Google Scholar
Sullivan, M. B., Weitz, J. S. & Wilhelm, S. Viral ecology comes of age. Environ. Microbiol. Rep. 9, 33–35 (2017).
Google Scholar
Brum, J. R. & Sullivan, M. B. Rising to the challenge: accelerated pace of discovery transforms marine virology. Nat. Rev. Microbiol. 13, 147–159 (2015).
Google Scholar
Roux, S. et al. Minimum information about an uncultivated virus genome (MIUViG). Nat. Biotechnol. 37, 29–37 (2019).
Google Scholar
Brum, J. R. et al. Patterns and ecological drivers of ocean viral communities. Science 348, 1261498 (2015).
Google Scholar
Gregory, A. C. et al. Marine DNA viral macro- and microdiversity from pole to pole. Cell 177, 1109–1123 (2019).
Google Scholar
Shu, W. S. & Huang, L. N. Microbial diversity in extreme environments. Nat. Rev. Microbiol. (2021).
Huang, L. N., Kuang, J. L. & Shu, W. S. Microbial ecology and evolution in the acid mine drainage model system. Trends Microbiol 24, 581–593 (2016).
Google Scholar
Hwang, Y., Rahlff, J., Schulze-Makuch, D., Schloter, M. & Probst, A. J. Diverse viruses carrying genes for microbial extremotolerance in the Atacama desert hyperarid soil. mSystems 6, e00385–21 (2021).
Google Scholar
Adriaenssens, E. M. et al. Environmental drivers of viral community composition in Antarctic soils identified by viromics. Microbiome 5, 83 (2017).
Google Scholar
Emerson, J. B. et al. Host-linked soil viral ecology along a permafrost thaw gradient. Nat. Microbiol. 3, 870–880 (2018).
Google Scholar
Andersson, A. F. & Banfield, J. F. Virus population dynamics and acquired virus resistance in natural microbial communities. Science 320, 1047–1050 (2008).
Google Scholar
Gao, S. M. et al. Depth-related variability in viral communities in highly stratified sulfidic mine tailings. Microbiome 8, 89 (2020).
Google Scholar
Holmfeldt, K. et al. The Fennoscandian Shield deep terrestrial virosphere suggests slow motion ‘boom and burst’ cycles. Commun. Biol. 4, 307 (2021).
Google Scholar
Rahlff, J. et al. Lytic archaeal viruses infect abundant primary producers in Earth’s crust. Nat. Commun. 12, 4642 (2021).
Google Scholar
Hao, Y. Q. et al. Microbial biogeography of acid mine drainage sediments at a regional scale across Southern China. FEMS Microbiol. Ecol. 98, fiac002 (2022).
Google Scholar
Paez-Espino, D., Pavlopoulos, G. A., Ivanova, N. N. & Kyrpides, N. C. Nontargeted virus sequence discovery pipeline and virus clustering for metagenomic data. Nat. Protoc. 12, 1673–1682 (2017).
Google Scholar
Roux, S., Enault, F., Hurwitz, B. L. & Sullivan, M. B. VirSorter: mining viral signal from microbial genomic data. PeerJ 3, e985 (2015).
Google Scholar
Nayfach, S. et al. CheckV: assessing the quality of metagenome-assembled viral genomes. Nat. Biotechnol. 39, 578–585 (2021).
Google Scholar
Bin Jang, H. et al. Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. Nat. Biotechnol. 37, 632–639 (2019).
Google Scholar
Li, Z. et al. Deep sea sediments associated with cold seeps are a subsurface reservoir of viral diversity. ISME J. 15, (2021).
Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res 47, D309–D314 (2019).
Google Scholar
Wu, S. et al. DeePhage: distinguishing virulent and temperate phage-derived sequences in metavirome data with a deep learning approach. Gigascience 10, giab056 (2021).
Google Scholar
Chen, L. X. et al. Comparative metagenomic and metatranscriptomic analyses of microbial communities in acid mine drainage. ISME J. 9, 1579–1592 (2015).
Google Scholar
Liang, J. L. et al. Novel phosphate-solubilizing bacteria enhance soil phosphorus cycling following ecological restoration of land degraded by mining. ISME J. 14, 1600–1613 (2020).
Google Scholar
Hsieh, Y. J. & Wanner, B. L. Global regulation by the seven-component Pi signaling system. Curr. Opin. Microbiol. 13, 198–203 (2010).
Google Scholar
Stasi, R., Neves, H. I. & Spira, B. Phosphate uptake by the phosphonate transport system PhnCDE. BMC Microbiol 19, 79 (2019).
Google Scholar
Narr, A., Nawaz, A., Wick, L. Y., Harms, H. & Chatzinotas, A. Soil viral communities vary temporally and along a land use transect as revealed by virus-like particle counting and a modified community fingerprinting approach (fRAPD). Front. Microbiol. 8, 1975 (2017).
Google Scholar
Santos-Medellin, C. et al. Viromes outperform total metagenomes in revealing the spatiotemporal patterns of agricultural soil viral communities. ISME J. 15, 1956–1970 (2021).
Google Scholar
Tyson, G. W. & Banfield, J. F. Rapidly evolving CRISPRs implicated in acquired resistance of microorganisms to viruses. Environ. Microbiol. 10, 200–207 (2008).
Google Scholar
Sun, C. L. et al. Phage mutations in response to CRISPR diversification in a bacterial population. Environ. Microbiol. 15, 463–470 (2013).
Google Scholar
Hurwitz, B. L., Westveld, A. H., Brum, J. R. & Sullivan, M. B. Modeling ecological drivers in marine viral communities using comparative metagenomics and network analyses. Proc. Natl Acad. Sci. USA 111, 10714–10719 (2014).
Google Scholar
Jin, M. et al. Diversities and potential biogeochemical impacts of mangrove soil viruses. Microbiome 7, 58 (2019).
Google Scholar
Dinsdale, E. A. et al. Functional metagenomic profiling of nine biomes. Nature 452, 629–632 (2008).
Google Scholar
Tedersoo, L. et al. Fungal biogeography. Global diversity and geography of soil fungi. Science 346, 1256688 (2014).
Google Scholar
Miraldo, A. et al. An Anthropocene map of genetic diversity. Science 353, 1532–1535 (2016).
Google Scholar
Bonnain, C., Breitbart, M. & Buck, K. N. The Ferrojan horse hypothesis: iron-virus interactions in the ocean. Front. Mar. Sci. 3, 82 (2016).
Google Scholar
Muratore, D. & Weitz, J. S. Infect while the iron is scarce: nutrient-explicit phage-bacteria games. Theor. Ecol. 14, 467–487 (2021).
Google Scholar
Kyle, J. E., Pedersen, K. & Ferris, F. G. Virus mineralization at low pH in the Rio Tinto. Spain Geomicrobiol. J. 25, 338–345 (2008).
Google Scholar
Kyle, J. E. & Ferris, F. G. Geochemistry of virus–prokaryote interactions in freshwater and acid mine drainage environments, Ontario, Canada. Geomicrobiol. J. 30, 769–778 (2013).
Google Scholar
Hewson, I., O’Neil, J. M., Fuhrman, J. A. & Dennison, W. C. Virus-like particle distribution and abundance in sediments and overlying waters along eutrophication gradients in two subtropical estuaries. Limnol. Oceanogr. 46, 1734–1746 (2001).
Google Scholar
Wu, L. et al. Global diversity and biogeography of bacterial communities in wastewater treatment plants. Nat. Microbiol. 4, 1183–1195 (2019).
Google Scholar
Bates, S. T. et al. Global biogeography of highly diverse protistan communities in soil. ISME J. 7, 652–659 (2013).
Google Scholar
Kuang, J. L. et al. Contemporary environmental variation determines microbial diversity patterns in acid mine drainage. ISME J. 7, 1038–1050 (2013).
Google Scholar
Sant, D. G., Woods, L. C., Barr, J. J. & McDonald, M. J. Host diversity slows bacteriophage adaptation by selecting generalists over specialists. Nat. Ecol. Evol. 5, 350–359 (2021).
Google Scholar
Betts, A., Gray, C., Zelek, M., MacLean, R. C. & King, K. C. High parasite diversity accelerates host adaptation and diversification. Science 360, 907–911 (2018).
Google Scholar
Goldsmith, D. B., Parsons, R. J., Beyene, D., Salamon, P. & Breitbart, M. Deep sequencing of the viral phoH gene reveals temporal variation, depth-specific composition, and persistent dominance of the same viral phoH genes in the Sargasso Sea. Peer. J. 3, e997 (2015).
Google Scholar
Goldsmith, D. B. et al. Development of phoH as a novel signature gene for assessing marine phage diversity. Appl. Environ. Microbiol. 77, 7730–7739 (2011).
Google Scholar
Martiny, A. C., Coleman, M. L. & Chisholm, S. W. Phosphate acquisition genes in Prochlorococcus ecotypes: evidence for genome-wide adaptation. Proc. Natl Acad. Sci. USA 103, 12552–12557 (2006).
Google Scholar
Tetu, S. G. et al. Microarray analysis of phosphate regulation in the marine cyanobacterium Synechococcus sp. WH8102. ISME J. 3, 835–849 (2009).
Google Scholar
Zeng, Q. & Chisholm, S. W. Marine viruses exploit their host’s two-component regulatory system in response to resource limitation. Curr. Biol. 22, 124–128 (2012).
Google Scholar
Kazakov, A. E., Vassieva, O., Gelfand, M. S., Osterman, A. & Overbeek, R. Bioinformatics classification and functional analysis of PhoH homologs. Silico Biol. 3, 3–15 (2003).
Google Scholar
Bray, R. H. & Kurtz, L. T. Determination of total, organic, and available forms of phosphorus in soils. Soil Sci. 59, 39–46 (1945).
Google Scholar
Hill, A. G. et al. Standardized general method for the determination of iron with 1,10-phenanthroline. Analyst 103, 391–396 (1978).
Google Scholar
Chesmin, L. & Yien, C. H. Turbidimetric determination of available sulphate. Soil Sci. Soc. Am. Proc. 15, 149–151 (1951).
Google Scholar
Fang, Y. et al. Modified pretreatment method for total microbial DNA extraction from contaminated river sediment. Front. Environ. Sci. Eng. 9, 444–452 (2015).
Google Scholar
Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).
Google Scholar
Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinforma. 11, 119 (2010).
Google Scholar
El-Gebali, S. et al. The Pfam protein families database in 2019. Nucleic Acids Res 47, D427–D432 (2019).
Google Scholar
Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M. & Tanabe, M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 44, D457–D462 (2016).
Google Scholar
Eddy, S. R. Accelerated profile HMM searches. PLOS Comput. Biol. 7, e1002195 (2011).
Google Scholar
Roux, S., Hallam, S. J., Woyke, T. & Sullivan, M. B. Viral dark matter and virus-host interactions resolved from publicly available microbial genomes. Elife 4, e08490 (2015).
Google Scholar
Roux, S. et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature 537, 689–693 (2016).
Google Scholar
Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next- generation sequencing data. Bioinformatics 28, 3150–3152 (2012).
Google Scholar
Kang, D. D. et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7, e7359 (2019).
Google Scholar
Wu, Y. W., Simmons, B. A. & Singer, S. W. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 32, 605–607 (2016).
Google Scholar
Brown, C. T. et al. Unusual biology across a group comprising more than 15% of domain Bacteria. Nature 523, 208–201 (2015).
Google Scholar
Alneberg, J. et al. Binning metagenomic contigs by coverage and composition. Nat. Methods 11, 1144–1146 (2014).
Google Scholar
Sieber, C. M. K. et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat. Microbiol. 3, 836–843 (2018).
Google Scholar
Parks, D. H. et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat. Microbiol. 2, 1533–1542 (2017).
Google Scholar
Chaumeil, P. A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927 (2019).
Google Scholar
Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25, 1043–1055 (2015).
Google Scholar
Woodcroft, B. J. et al. Genome-centric view of carbon processing in thawing permafrost. Nature 560, 49–54 (2018).
Google Scholar
Edwards, R. A., McNair, K., Faust, K., Raes, J. & Dutilh, B. E. Computational approaches to predict bacteriophage-host relationships. FEMS Microbiol. Rev. 40, 258–272 (2016).
Google Scholar
Rho, M., Wu, Y. W., Tang, H., Doak, T. G. & Ye, Y. Diverse CRISPRs evolving in human microbiomes. PLoS Genet. 8, e1002441 (2012).
Google Scholar
Paez-Espino, D. et al. Uncovering Earth’s virome. Nature 536, 425–430 (2016).
Google Scholar
Edgar, R. C. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinforma. 5, 113 (2004).
Google Scholar
Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).
Google Scholar
Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).
Google Scholar
Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res 47, W256–W259 (2019).
Google Scholar
R Development Core Team. R: A Language and environment for statistical computing. (2013).
Oksanen, J. et al. vegan: Community ecology package. R package version 2.5-5. (2019).
Harrell, F. E. Jr. & Dupont, M. C. The hmisc package. R. package version 4, 2–0 (2019).
R Development Core Team. The R Stats Package. R package version 4.0.3 (2013).
Rosseel, Y. Lavaan: An R package for structural equation modeling and more. Version 0.5-12 (BETA). J. Stat. Soft 48, 1–36 (2012).
Google Scholar
Flores, C. O., Meyer, J. R., Valverde, S., Farr, L. & Weitz, J. S. Statistical structure of host-phage interactions. Proc. Natl Acad. Sci. USA 108, E288–E297 (2011).
Google Scholar
Source: Ecology - nature.com