in

Permafrost in the Cretaceous supergreenhouse

  • Biskaborn, B. K. et al. Permafrost is warming at a global scale. Nat. Commun. 10, 264 (2019).

    Article 
    ADS 

    Google Scholar 

  • Murton, J. B. What and where are periglacial landscapes? Permaf. Periglac. Process. 32, 186–212 (2021).

    Article 

    Google Scholar 

  • Woodcroft, B. J. et al. Genome-centric view of carbon processing in thawing permafrost. Nature 560, 49–54 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Reyes, F. & Lougheed, V. L. Rapid nutrient release from permafrost thaw in Arctic aquatic ecosystems. Arct. Antarct. Alp. Res. 47, 35–48 (2015).

    Article 

    Google Scholar 

  • Fouché, J., Christiansen, C. T., Lafrenière, M. J., Grogan, P. & Lamoureux, S. F. Canadian permafrost stores large pools of ammonium and optically distinct dissolved organic matter. Nat. Commun. 11, 4500 (2020).

    Article 
    ADS 

    Google Scholar 

  • Alley, N. F., Hore, S. B. & Frakes, L. A. Glaciations at high-latitude Southern Australia during the Early Cretaceous. Aust. J. Earth Sci. 67, 1045–1095 (2020).

    Article 
    ADS 

    Google Scholar 

  • Hore, S. B., Hill, S. M. & Alley, N. F. Early Cretaceous glacial environment and paleosurface evolution within the Mount Painter Inlier, northern Flinders Ranges, South Australia. Aust. J. Earth Sci. 67, 1117–1160 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Rodríguez-López, J. P. et al. Glacial dropstones in the western Tethys during the late Aptian–early Albian cold snap: Palaeoclimate and palaeogeographic implications for the mid-Cretaceous. Palaeogeogr. Palaeoclimatol. Palaeoecol. 452, 11–27 (2016).

    Article 

    Google Scholar 

  • Schneider, S. et al. Macrofauna and biostratigraphy of the Rollrock Section, northern Ellesmere Island, Canadian Arctic Islands e a comprehensive high latitude archive of the Jurassic–Cretaceous transition. Cret. Res. 114, 104508 (2020).

    Article 

    Google Scholar 

  • Jeans, C. V. & Platten, I. M. The erratic rocks of the Upper Cretaceous Chalk of England: how did they get there, ice transport or other means? Acta Geol. Pol. 71, 287–304 (2021).

    Google Scholar 

  • Wu, C. & Rodríguez-López, J. P. Cryospheric processes in Quaternary and Cretaceous hyper-arid oases. Sedimentology 68, 755–770 (2021).

    Article 

    Google Scholar 

  • Grasby, S. E., McCune, G. E., Beauchamp, B. & Galloway, J. M. Lower Cretaceous cold snaps led to widespread glendonite occurrences in the Sverdrup Basin, Canadian High Arctic. GSA Bull. 129, 771–787 (2017).

    Article 
    CAS 

    Google Scholar 

  • Galloway, J. M. et al. Finding the VOICE: organic carbon isotope chemostratigraphy of the Late Jurassic–Early Cretaceous of Arctic Canada. Geol. Mag. 1–15 https://doi.org/10.1017/S0016756819001316 (2019).

  • Rogov, M. et al. Database of global glendonite and ikaite records throughout the Phanerozoic. Earth Syst. Sci. Data 13, 343–356 (2021).

    Article 
    ADS 

    Google Scholar 

  • Price, G. D. The evidence and implications of polar ice during the Mesozoic. Earth–Sci. Rev. 48, 183–210 (1999).

    Article 
    ADS 

    Google Scholar 

  • Savidge, R. A. Evidence of early glaciation of southeastern Beringia. Can. J. Earth Sci. 57, 199–226 (2020).

    Article 
    ADS 

    Google Scholar 

  • Wang, Y. et al. Relict sand wedges suggest a high altitude and cold temperature during the Early Cretaceous in the Ordos Basin, North China. Int. Geol. Rev. https://doi.org/10.1080/00206814.2022.2081938 (2022).

  • Nelson, D. A., Cottle, J. M., Bindeman, I. N. & Camacho, A. Ultra-depleted hydrogen isotopes in hydrated glass record Late Cretaceous glaciation in Antarctica. Nat. Commun. 13, 5209 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Yang, W.-B. et al. Isotopic evidence for continental ice sheet in mid-latitude region in the supergreenhouse Early Cretaceous. Sci. Rep. 3, 2732 (2013).

    Article 

    Google Scholar 

  • Gao, T. et al. Accelerating permafrost collapse on the eastern Tibetan Plateau. Environ. Res. Lett. 16, 054023 (2021).

    Article 
    ADS 

    Google Scholar 

  • Huang, Y. B. The origin and evolution of the desert in southern Ordos in early Cretaceous: Constraint from Magnetostratigraphy of Zhidan Group and magnetic susceptibility of its sediment. Doctoral Dissertation. Lanzhou University (2010).

  • Ma, J. Sedimentary Basin Analysis of the Cretaceous Ancient Desert in the Ordos Basin. Master’s thesis, China University of Geosciences (2020).

  • Wu, C. H., Rodríguez-López, J. P. & Santosh, M. Plateau archives of lithosphere dynamics, cryosphere and paleoclimate: the formation of Cretaceous desert basins in east Asia. Geosci. Front. 13, 101454 (2022).

    Article 
    CAS 

    Google Scholar 

  • Zhu, R. X., Chen, L., Wu, F. Y. & Liu, J. L. Timing, scale and mechanism of the destruction of the North China Craton. Sci. China Earth Sci. 54, 789–797 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Rodríguez-López, J. P., Clemmensen, L. B., Lancaster, N., Mountney, N. P. & Veiga, G. D. Archean to Recent aeolian sand systems and their preserved successions: current understanding and way forward. Sedimentology 61, 1487–1534 (2014).

    Article 

    Google Scholar 

  • Murton, J. B. in Encyclopedia of Quaternary Science Vol. 3 (eds Elias, S. A. & Mock, C. J.) 436–451 (Elsevier, Amsterdam, 2013).

  • Rodríguez-López, J. P., Van Vliet-Lanöe, B., López-Martínez, J. & Martín-García, R. Scouring by rafted ice and cryogenic pattern ground preserved in a Palaeoproterozoic equatorial proglacial lagoon succession, eastern India, Nuna supercontinent. Mar. Pet. Geol. 123, 104766 (2021).

    Article 

    Google Scholar 

  • Murton, J. B., Worsley, P. & Gozdzik, J. Sand veins and wedges in cold aeolian environments. Quat. Sci. Rev. 19, 899–922 (2000).

    Article 
    ADS 

    Google Scholar 

  • Kovács, J., Fábián, S. A., Schweitzer, F. & Varga, G. A relict sand-wedge polygon site in north-central Hungary. Permafr. Periglac. Process. 18, 379–384 (2007).

    Article 

    Google Scholar 

  • Fábián, S. Á. et al. Distribution of relict permafrost features in the Pannonian Basin, Hungary. Boreas 43, 722–732 (2014).

    Article 

    Google Scholar 

  • Williams, G. E. Proterozoic (pre-Ediacaran) glaciation and the high obliquity, low-latitude ice, strong seasonality (HOLIST) hypothesis: principles and tests. Earth–Sci. Rev. 87, 61–93 (2008).

    Article 
    ADS 

    Google Scholar 

  • Williams, G. E., Schmidt, P. W. & Young, G. M. Strongly seasonal Proterozoic glacial climate in low palaeolatitudes: radically different climate system on the pre-Ediacaran Earth. Geosci. Front. 7, 555–571 (2016).

    Article 

    Google Scholar 

  • Van Vliet-Lanoë, B. Deformations in the active layer related with ice/soil wedge growth and decay in present day Arctic. Paleoclimate implications. Ann. Soc. Géol. Nord. 13, 81–95 (2005).

    Google Scholar 

  • Remillard, A. M. et al. Chronology and palaeoenvironmental implications of the ice-wedge pseudomorphs and composite wedge casts on the Magdalen Islands (eastern Canada). Boreas 44, 658–675 (2015).

    Article 

    Google Scholar 

  • Murton, J. B. Thermokarst sediments and sedimentary structures, Tuktoyaktuk Coastlands, western Arctic Canada. Glob. Planet. Change 28, 175–192 (2001).

    Article 
    ADS 

    Google Scholar 

  • Harris, C., Murton, J. B. & Davies, M. C. R. An analysis of mechanisms of ice-wedge casting based on geotechnical centrifuge modelling. Geomorphology 71, 328–343 (2005).

    Article 
    ADS 

    Google Scholar 

  • Houmark-Nielsen, M. et al. Early and Middle Valdaian glaciations, ice-dammed lakes and periglacial interstadials in northwest Russia: new evidence from the Pyoza River area. Glob. Planet. Change 31, 215–237 (2001).

    Article 
    ADS 

    Google Scholar 

  • Murton, J. B. & Kolstrup, E. Ice-wedge casts as indicators of palaeotemperatures: precise proxy or wishful thinking? Prog. Phys. Geogr. 27, 155–170 (2003).

    Article 

    Google Scholar 

  • Harry, D. G. & Gozdzik, J. S. Ice wedges: growth, thaw transformation, and palaeoenvironmental significance. J. Quat. Sci. 3, 39–55 (1988).

    Article 

    Google Scholar 

  • Wolfe, S. A., Morse, P. D., Neudorf, C. M., Kokelj, S. V., Lian, O. B. & O’Neill, H. B. Contemporary sand wedge development in seasonally frozen ground and paleoenvironmental implications. Geomorphology 308, 215–229 (2018).

    Article 
    ADS 

    Google Scholar 

  • Murton, J. B. & Bateman, M. D. Syngenetic sand veins and anti-syngenetic sand wedges, Tuktoyaktuk Coastlands, western Arctic Canada. Permafr. Periglac. Process. 18, 33–47 (2007).

    Article 

    Google Scholar 

  • Obu, J., Westermann, S., Kääb, A., & Bartsch, A. Ground Temperature Map, 2000–2016, Northern Hemisphere Permafrost (Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, PANGAEA, 2018)

  • Obu, J. et al. Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale. Earth–Sci. Rev. 193, 299–316 (2019).

    Article 
    ADS 

    Google Scholar 

  • Hock, R. et al. in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) 131–202 (Cambridge University Press, Cambridge, UK and New York, NY, USA, 2019).

  • Mackay, J. R. The origin of hummocks, western arctic coast, Canada. Can. J. Earth Sci. 17, 996–1006 (1980).

    Article 
    ADS 

    Google Scholar 

  • Kokelj, S. V., Burn, C. R. & Tarnocai, C. The structure and dynamics of earth hummocks in the subarctic forest near Inuvik, Northwest Territories, Canada. Arct. Antarct. Alp. Res. 39, 99–109 (2007).

    Article 

    Google Scholar 

  • Rodríguez-López, J. P., Meléndez, N., de Boer, P. L., Soria, A. R. & Liesa, C. L. Spatial variability of multicontrolled aeolian supersurfaces in central-erg and marine erg-margin systems. Aeolian Res. 11, 141–154 (2013).

    Article 
    ADS 

    Google Scholar 

  • Lunt, D. J. et al. Palaeogeographic controls on climate and proxy interpretation. Clim. Past 12, 1181–1198 (2016).

    Article 

    Google Scholar 

  • Cheng, G., Bai, Y. & Sun, Y. Paleomagnetic study on the tectonic evolution of the Ordos Block, North China. Seismol. Geol. 10, 81–87 (1988).

    Google Scholar 

  • Zheng, Z. et al. The apparent polar wander path for the North China Block since the Jurassic. Geophys. J. Int. 104, 29–40 (1991).

    Article 
    ADS 

    Google Scholar 

  • Malinverno, A., Hildebrandt, J., Tominaga, M. & Channell, J. E. T. M-sequence geomagnetic polarity time scale (MHTC12) that steadies global spreading rates and incorporates astrochronology constraints. J. Geophys. Res. 117, B06104 (2012).

    ADS 

    Google Scholar 

  • Zachos, J. C., Shackleton, N. J., Revenaugh, J. S., Pälike, H. & Flower, B. P. Climate response to orbital forcing across the Oligocene–Miocene boundary. Science 292, 274–278 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Li, M. et al. Astronomical tuning of the end-Permian extinction and the Early Triassic Epoch of South China and Germany. Earth Planet. Sci. Lett. 441, 10–25 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Westall, F. The nature of fossil bacteria: a guide to the search for extraterrestial live. J. Geophys. Res. 104, 437–16,451 (1999).

    Google Scholar 

  • Yang, H., Chen, Z.-Q. & Papineau, D. Cyanobacterial spheroids and other biosignatures from microdigitate stromatolites of Mesoproterozoic Wumishan Formation in Jixian, North China. Precambrian Res. 368, 106496 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kremer, B., Kazmierczak, J., Łukomska-Kowalczyk, M. & Kempe, S. Calcification and silicification: fossilization potential of cyanobacteria from stromatolites of Niuafo’ou’s caldera lakes (Tonga) and implications for the early fossil record. Astrobiology 12, 535–548 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Astafieva M. M. et al. Fossil Bacteria and Other Microorganisms in Terrestrial Rocks and Astromaterials (Paleontological Institute Russian Academy of Science, Moscow, 2011).

  • Rozanov, A. Y. & Zavarzin, G. A. Bacterial paleontology. Vestn. Akad. Med. Nauk 67, 241–245 (1997).

    Google Scholar 

  • Perez-Mon, C., Stierli, B., Plötze, M. & Frey, B. Fast and persistent responses of alpine permafrost microbial communities to in situ warming. Sci. Total Environ. 807, 150–720 (2022).

    Article 

    Google Scholar 

  • Rivkina, E. et al. Earth’s perennially frozen environments as a model of cryogenic planet ecosystems. Permafr. Periglac. Process. 29, 246–256 (2018).

    Article 

    Google Scholar 

  • Vishnivetskaya, T. A. et al. Insights into community of photosynthetic microorganisms from permafrost. FEMS Microbiol. Ecol. 96, fiaa229 (2020).

    Article 
    CAS 

    Google Scholar 

  • Hultman, J. et al. Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes. Nature 521, 208–212 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Choe, Y. H. et al. Comparing rock-inhabiting microbial communities in different rock types from a high arctic polar desert. FEMS Microbiol. Ecol. 94, fiy070 (2018).

    ADS 

    Google Scholar 

  • Wu, X. et al. Comparative metagenomics of the active layer and permafrost from low-carbon soil in the Canadian High Arctic. Environ. Sci. Technol. 55, 12683–12693 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Vickers, M. L. et al. The duration and magnitude of Cretaceous cold events: evidence from the northern high latitudes. Geol. Soc. Am. Bull. 131, 1979–1994 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Lehmann, J. in Ammonoid Palaeobiology: From Macroevolution to Palaeogeography (eds Klug, C. De Baets, K., Kruta I. & Mapes, R. H.) 403–429 (Springer, Amsterdam, 2015).

  • Keller, M. A. & Macquaker, J. H. S. in Studies by the U.S. Geological Survey in Alaska: US Geological Survey Professional Paper 1814-B Vol. 15 (ed Dumoulin, J. A.) 1–35 (US Geological Survey, US Department of The Interior, Reston, 2015).

  • Cavalheiro, L. et al. Impact of global cooling on Early Cretaceous high pCO2 world during the Weissert Event. Nat. Commun. 12, 5411 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • McArthur, J. M. et al. Palaeotemperatures, polar ice-volume, and isotope stratigraphy (Mg/Ca, d18O, d13C, 87Sr/86Sr): the Early Cretaceous (Berriasian, Valanginian, Hauterivian). Palaeogeogr. Palaeoclimatol. Palaeoecol. 248, 391–430 (2007).

    Article 

    Google Scholar 

  • Lini, A., Weissert, H. & Erba, E. The Valanginian carbon isotope event: a first episode of greenhouse climate conditions during the Cretaceous. Terra Nova 4, 374–384 (1992).

    Article 
    ADS 

    Google Scholar 

  • Li, X. et al. Carbon isotope signatures of pedogenic carbonates from SE China: rapid atmospheric pCO2 changes during middle–late Early Cretaceous time. Geol. Mag. 151, 830–849 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • O’Brien, Ch. L. et al. Cretaceous sea-surface temperature evolution: constraints from TEX86 and planktonic foraminiferal oxygen isotopes. Earth–Sci. Rev. 172, 224–247 (2017).

    Article 
    ADS 

    Google Scholar 

  • Price, G. D. et al. A high-resolution Belemnite geochemical analysis of early Cretaceous (Valanginian–Hauterivian) environmental and climatic perturbations. Geochem. Geophys. Geosyst. 19, 3832–3843 (2018).

    Article 
    CAS 

    Google Scholar 

  • Turetsky, M. R. et al. Carbon release through abrupt permafrost thaw. Nat. Geosci. 13, 138–143 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Van der Kolk, D. A., Whalen, M. T., Wartes, M. A., Newberry, R. J. & McCarthy, P. in Arctic to the Cordillera: Unlocking the Potential. American Association of Petroleum Geologists Pacific Section Meeting, May 8–11, Anchorage, AK, USA, Search and Discovery Article 90125 (American Association of Petroleum Geologists, 2011).

  • Walter Anthony, K. M. et al. 21st-century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes. Nat. Commun. 9, 3262 (2018).

    Article 
    ADS 

    Google Scholar 

  • Cheng, F. et al. Alpine permafrost could account for a quarter of thawed carbon based on Plio-Pleistocene palaeoclimate analogue. Nat. Commun. 13, 1329 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Brouillette, M. How microbes in permafrost could trigger a massive carbon bomb. Nature 591, 360–362 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Murton, J. B. in Climate Change, Observed Impacts on Planet Earth, 3rd edn (ed Letcher, T.) 281–326 (Elsevier, Amsterdam, 2021).

  • Schnyder, J., Ruffell, A., Deconinck, J. F. & Baudin, F. Conjunctive use of spectral gamma-ray logs and clay mineralogy in defining late Jurassic–early Cretaceous palaeoclimate change (Dorset, UK). Palaeogeogr. Palaeoclimatol. Palaeoecol. 229, 303–320 (2006).

    Article 

    Google Scholar 

  • Li, M. et al. Astrochronology of the Anisian stage (Middle Triassic) at the guandao reference section, south china. Earth Planet. Sci. Lett. 482, 591–606 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Li, M. et al. Palaeoclimate proxies for cyclostratigraphy: comparative analysis using a Lower Triassic marine section in South China. Earth–Sci. Rev. 189, 125–146 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Li, M., Hinnov, L. & Kump, L. Acycle: time–series analysis software for palaeoclimate research and education. Comput. Geosci. 127, 12–22 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Laskar, J. et al. A long–term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. 428, 261–285 (2004).

    Article 
    ADS 

    Google Scholar 

  • Evaluation of the current understanding of the impact of climate change on coral physiology after three decades of experimental research

    Validation of SNP markers for thermotolerance adaptation in Ovis aries adapted to different climatic regions using KASP-PCR technique