in

Permafrost in the Cretaceous supergreenhouse

  • Biskaborn, B. K. et al. Permafrost is warming at a global scale. Nat. Commun. 10, 264 (2019).

    Article 
    ADS 

    Google Scholar 

  • Murton, J. B. What and where are periglacial landscapes? Permaf. Periglac. Process. 32, 186–212 (2021).

    Article 

    Google Scholar 

  • Woodcroft, B. J. et al. Genome-centric view of carbon processing in thawing permafrost. Nature 560, 49–54 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Reyes, F. & Lougheed, V. L. Rapid nutrient release from permafrost thaw in Arctic aquatic ecosystems. Arct. Antarct. Alp. Res. 47, 35–48 (2015).

    Article 

    Google Scholar 

  • Fouché, J., Christiansen, C. T., Lafrenière, M. J., Grogan, P. & Lamoureux, S. F. Canadian permafrost stores large pools of ammonium and optically distinct dissolved organic matter. Nat. Commun. 11, 4500 (2020).

    Article 
    ADS 

    Google Scholar 

  • Alley, N. F., Hore, S. B. & Frakes, L. A. Glaciations at high-latitude Southern Australia during the Early Cretaceous. Aust. J. Earth Sci. 67, 1045–1095 (2020).

    Article 
    ADS 

    Google Scholar 

  • Hore, S. B., Hill, S. M. & Alley, N. F. Early Cretaceous glacial environment and paleosurface evolution within the Mount Painter Inlier, northern Flinders Ranges, South Australia. Aust. J. Earth Sci. 67, 1117–1160 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Rodríguez-López, J. P. et al. Glacial dropstones in the western Tethys during the late Aptian–early Albian cold snap: Palaeoclimate and palaeogeographic implications for the mid-Cretaceous. Palaeogeogr. Palaeoclimatol. Palaeoecol. 452, 11–27 (2016).

    Article 

    Google Scholar 

  • Schneider, S. et al. Macrofauna and biostratigraphy of the Rollrock Section, northern Ellesmere Island, Canadian Arctic Islands e a comprehensive high latitude archive of the Jurassic–Cretaceous transition. Cret. Res. 114, 104508 (2020).

    Article 

    Google Scholar 

  • Jeans, C. V. & Platten, I. M. The erratic rocks of the Upper Cretaceous Chalk of England: how did they get there, ice transport or other means? Acta Geol. Pol. 71, 287–304 (2021).

    Google Scholar 

  • Wu, C. & Rodríguez-López, J. P. Cryospheric processes in Quaternary and Cretaceous hyper-arid oases. Sedimentology 68, 755–770 (2021).

    Article 

    Google Scholar 

  • Grasby, S. E., McCune, G. E., Beauchamp, B. & Galloway, J. M. Lower Cretaceous cold snaps led to widespread glendonite occurrences in the Sverdrup Basin, Canadian High Arctic. GSA Bull. 129, 771–787 (2017).

    Article 
    CAS 

    Google Scholar 

  • Galloway, J. M. et al. Finding the VOICE: organic carbon isotope chemostratigraphy of the Late Jurassic–Early Cretaceous of Arctic Canada. Geol. Mag. 1–15 https://doi.org/10.1017/S0016756819001316 (2019).

  • Rogov, M. et al. Database of global glendonite and ikaite records throughout the Phanerozoic. Earth Syst. Sci. Data 13, 343–356 (2021).

    Article 
    ADS 

    Google Scholar 

  • Price, G. D. The evidence and implications of polar ice during the Mesozoic. Earth–Sci. Rev. 48, 183–210 (1999).

    Article 
    ADS 

    Google Scholar 

  • Savidge, R. A. Evidence of early glaciation of southeastern Beringia. Can. J. Earth Sci. 57, 199–226 (2020).

    Article 
    ADS 

    Google Scholar 

  • Wang, Y. et al. Relict sand wedges suggest a high altitude and cold temperature during the Early Cretaceous in the Ordos Basin, North China. Int. Geol. Rev. https://doi.org/10.1080/00206814.2022.2081938 (2022).

  • Nelson, D. A., Cottle, J. M., Bindeman, I. N. & Camacho, A. Ultra-depleted hydrogen isotopes in hydrated glass record Late Cretaceous glaciation in Antarctica. Nat. Commun. 13, 5209 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Yang, W.-B. et al. Isotopic evidence for continental ice sheet in mid-latitude region in the supergreenhouse Early Cretaceous. Sci. Rep. 3, 2732 (2013).

    Article 

    Google Scholar 

  • Gao, T. et al. Accelerating permafrost collapse on the eastern Tibetan Plateau. Environ. Res. Lett. 16, 054023 (2021).

    Article 
    ADS 

    Google Scholar 

  • Huang, Y. B. The origin and evolution of the desert in southern Ordos in early Cretaceous: Constraint from Magnetostratigraphy of Zhidan Group and magnetic susceptibility of its sediment. Doctoral Dissertation. Lanzhou University (2010).

  • Ma, J. Sedimentary Basin Analysis of the Cretaceous Ancient Desert in the Ordos Basin. Master’s thesis, China University of Geosciences (2020).

  • Wu, C. H., Rodríguez-López, J. P. & Santosh, M. Plateau archives of lithosphere dynamics, cryosphere and paleoclimate: the formation of Cretaceous desert basins in east Asia. Geosci. Front. 13, 101454 (2022).

    Article 
    CAS 

    Google Scholar 

  • Zhu, R. X., Chen, L., Wu, F. Y. & Liu, J. L. Timing, scale and mechanism of the destruction of the North China Craton. Sci. China Earth Sci. 54, 789–797 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Rodríguez-López, J. P., Clemmensen, L. B., Lancaster, N., Mountney, N. P. & Veiga, G. D. Archean to Recent aeolian sand systems and their preserved successions: current understanding and way forward. Sedimentology 61, 1487–1534 (2014).

    Article 

    Google Scholar 

  • Murton, J. B. in Encyclopedia of Quaternary Science Vol. 3 (eds Elias, S. A. & Mock, C. J.) 436–451 (Elsevier, Amsterdam, 2013).

  • Rodríguez-López, J. P., Van Vliet-Lanöe, B., López-Martínez, J. & Martín-García, R. Scouring by rafted ice and cryogenic pattern ground preserved in a Palaeoproterozoic equatorial proglacial lagoon succession, eastern India, Nuna supercontinent. Mar. Pet. Geol. 123, 104766 (2021).

    Article 

    Google Scholar 

  • Murton, J. B., Worsley, P. & Gozdzik, J. Sand veins and wedges in cold aeolian environments. Quat. Sci. Rev. 19, 899–922 (2000).

    Article 
    ADS 

    Google Scholar 

  • Kovács, J., Fábián, S. A., Schweitzer, F. & Varga, G. A relict sand-wedge polygon site in north-central Hungary. Permafr. Periglac. Process. 18, 379–384 (2007).

    Article 

    Google Scholar 

  • Fábián, S. Á. et al. Distribution of relict permafrost features in the Pannonian Basin, Hungary. Boreas 43, 722–732 (2014).

    Article 

    Google Scholar 

  • Williams, G. E. Proterozoic (pre-Ediacaran) glaciation and the high obliquity, low-latitude ice, strong seasonality (HOLIST) hypothesis: principles and tests. Earth–Sci. Rev. 87, 61–93 (2008).

    Article 
    ADS 

    Google Scholar 

  • Williams, G. E., Schmidt, P. W. & Young, G. M. Strongly seasonal Proterozoic glacial climate in low palaeolatitudes: radically different climate system on the pre-Ediacaran Earth. Geosci. Front. 7, 555–571 (2016).

    Article 

    Google Scholar 

  • Van Vliet-Lanoë, B. Deformations in the active layer related with ice/soil wedge growth and decay in present day Arctic. Paleoclimate implications. Ann. Soc. Géol. Nord. 13, 81–95 (2005).

    Google Scholar 

  • Remillard, A. M. et al. Chronology and palaeoenvironmental implications of the ice-wedge pseudomorphs and composite wedge casts on the Magdalen Islands (eastern Canada). Boreas 44, 658–675 (2015).

    Article 

    Google Scholar 

  • Murton, J. B. Thermokarst sediments and sedimentary structures, Tuktoyaktuk Coastlands, western Arctic Canada. Glob. Planet. Change 28, 175–192 (2001).

    Article 
    ADS 

    Google Scholar 

  • Harris, C., Murton, J. B. & Davies, M. C. R. An analysis of mechanisms of ice-wedge casting based on geotechnical centrifuge modelling. Geomorphology 71, 328–343 (2005).

    Article 
    ADS 

    Google Scholar 

  • Houmark-Nielsen, M. et al. Early and Middle Valdaian glaciations, ice-dammed lakes and periglacial interstadials in northwest Russia: new evidence from the Pyoza River area. Glob. Planet. Change 31, 215–237 (2001).

    Article 
    ADS 

    Google Scholar 

  • Murton, J. B. & Kolstrup, E. Ice-wedge casts as indicators of palaeotemperatures: precise proxy or wishful thinking? Prog. Phys. Geogr. 27, 155–170 (2003).

    Article 

    Google Scholar 

  • Harry, D. G. & Gozdzik, J. S. Ice wedges: growth, thaw transformation, and palaeoenvironmental significance. J. Quat. Sci. 3, 39–55 (1988).

    Article 

    Google Scholar 

  • Wolfe, S. A., Morse, P. D., Neudorf, C. M., Kokelj, S. V., Lian, O. B. & O’Neill, H. B. Contemporary sand wedge development in seasonally frozen ground and paleoenvironmental implications. Geomorphology 308, 215–229 (2018).

    Article 
    ADS 

    Google Scholar 

  • Murton, J. B. & Bateman, M. D. Syngenetic sand veins and anti-syngenetic sand wedges, Tuktoyaktuk Coastlands, western Arctic Canada. Permafr. Periglac. Process. 18, 33–47 (2007).

    Article 

    Google Scholar 

  • Obu, J., Westermann, S., Kääb, A., & Bartsch, A. Ground Temperature Map, 2000–2016, Northern Hemisphere Permafrost (Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, PANGAEA, 2018)

  • Obu, J. et al. Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale. Earth–Sci. Rev. 193, 299–316 (2019).

    Article 
    ADS 

    Google Scholar 

  • Hock, R. et al. in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) 131–202 (Cambridge University Press, Cambridge, UK and New York, NY, USA, 2019).

  • Mackay, J. R. The origin of hummocks, western arctic coast, Canada. Can. J. Earth Sci. 17, 996–1006 (1980).

    Article 
    ADS 

    Google Scholar 

  • Kokelj, S. V., Burn, C. R. & Tarnocai, C. The structure and dynamics of earth hummocks in the subarctic forest near Inuvik, Northwest Territories, Canada. Arct. Antarct. Alp. Res. 39, 99–109 (2007).

    Article 

    Google Scholar 

  • Rodríguez-López, J. P., Meléndez, N., de Boer, P. L., Soria, A. R. & Liesa, C. L. Spatial variability of multicontrolled aeolian supersurfaces in central-erg and marine erg-margin systems. Aeolian Res. 11, 141–154 (2013).

    Article 
    ADS 

    Google Scholar 

  • Lunt, D. J. et al. Palaeogeographic controls on climate and proxy interpretation. Clim. Past 12, 1181–1198 (2016).

    Article 

    Google Scholar 

  • Cheng, G., Bai, Y. & Sun, Y. Paleomagnetic study on the tectonic evolution of the Ordos Block, North China. Seismol. Geol. 10, 81–87 (1988).

    Google Scholar 

  • Zheng, Z. et al. The apparent polar wander path for the North China Block since the Jurassic. Geophys. J. Int. 104, 29–40 (1991).

    Article 
    ADS 

    Google Scholar 

  • Malinverno, A., Hildebrandt, J., Tominaga, M. & Channell, J. E. T. M-sequence geomagnetic polarity time scale (MHTC12) that steadies global spreading rates and incorporates astrochronology constraints. J. Geophys. Res. 117, B06104 (2012).

    ADS 

    Google Scholar 

  • Zachos, J. C., Shackleton, N. J., Revenaugh, J. S., Pälike, H. & Flower, B. P. Climate response to orbital forcing across the Oligocene–Miocene boundary. Science 292, 274–278 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Li, M. et al. Astronomical tuning of the end-Permian extinction and the Early Triassic Epoch of South China and Germany. Earth Planet. Sci. Lett. 441, 10–25 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Westall, F. The nature of fossil bacteria: a guide to the search for extraterrestial live. J. Geophys. Res. 104, 437–16,451 (1999).

    Google Scholar 

  • Yang, H., Chen, Z.-Q. & Papineau, D. Cyanobacterial spheroids and other biosignatures from microdigitate stromatolites of Mesoproterozoic Wumishan Formation in Jixian, North China. Precambrian Res. 368, 106496 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kremer, B., Kazmierczak, J., Łukomska-Kowalczyk, M. & Kempe, S. Calcification and silicification: fossilization potential of cyanobacteria from stromatolites of Niuafo’ou’s caldera lakes (Tonga) and implications for the early fossil record. Astrobiology 12, 535–548 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Astafieva M. M. et al. Fossil Bacteria and Other Microorganisms in Terrestrial Rocks and Astromaterials (Paleontological Institute Russian Academy of Science, Moscow, 2011).

  • Rozanov, A. Y. & Zavarzin, G. A. Bacterial paleontology. Vestn. Akad. Med. Nauk 67, 241–245 (1997).

    Google Scholar 

  • Perez-Mon, C., Stierli, B., Plötze, M. & Frey, B. Fast and persistent responses of alpine permafrost microbial communities to in situ warming. Sci. Total Environ. 807, 150–720 (2022).

    Article 

    Google Scholar 

  • Rivkina, E. et al. Earth’s perennially frozen environments as a model of cryogenic planet ecosystems. Permafr. Periglac. Process. 29, 246–256 (2018).

    Article 

    Google Scholar 

  • Vishnivetskaya, T. A. et al. Insights into community of photosynthetic microorganisms from permafrost. FEMS Microbiol. Ecol. 96, fiaa229 (2020).

    Article 
    CAS 

    Google Scholar 

  • Hultman, J. et al. Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes. Nature 521, 208–212 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Choe, Y. H. et al. Comparing rock-inhabiting microbial communities in different rock types from a high arctic polar desert. FEMS Microbiol. Ecol. 94, fiy070 (2018).

    ADS 

    Google Scholar 

  • Wu, X. et al. Comparative metagenomics of the active layer and permafrost from low-carbon soil in the Canadian High Arctic. Environ. Sci. Technol. 55, 12683–12693 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Vickers, M. L. et al. The duration and magnitude of Cretaceous cold events: evidence from the northern high latitudes. Geol. Soc. Am. Bull. 131, 1979–1994 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Lehmann, J. in Ammonoid Palaeobiology: From Macroevolution to Palaeogeography (eds Klug, C. De Baets, K., Kruta I. & Mapes, R. H.) 403–429 (Springer, Amsterdam, 2015).

  • Keller, M. A. & Macquaker, J. H. S. in Studies by the U.S. Geological Survey in Alaska: US Geological Survey Professional Paper 1814-B Vol. 15 (ed Dumoulin, J. A.) 1–35 (US Geological Survey, US Department of The Interior, Reston, 2015).

  • Cavalheiro, L. et al. Impact of global cooling on Early Cretaceous high pCO2 world during the Weissert Event. Nat. Commun. 12, 5411 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • McArthur, J. M. et al. Palaeotemperatures, polar ice-volume, and isotope stratigraphy (Mg/Ca, d18O, d13C, 87Sr/86Sr): the Early Cretaceous (Berriasian, Valanginian, Hauterivian). Palaeogeogr. Palaeoclimatol. Palaeoecol. 248, 391–430 (2007).

    Article 

    Google Scholar 

  • Lini, A., Weissert, H. & Erba, E. The Valanginian carbon isotope event: a first episode of greenhouse climate conditions during the Cretaceous. Terra Nova 4, 374–384 (1992).

    Article 
    ADS 

    Google Scholar 

  • Li, X. et al. Carbon isotope signatures of pedogenic carbonates from SE China: rapid atmospheric pCO2 changes during middle–late Early Cretaceous time. Geol. Mag. 151, 830–849 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • O’Brien, Ch. L. et al. Cretaceous sea-surface temperature evolution: constraints from TEX86 and planktonic foraminiferal oxygen isotopes. Earth–Sci. Rev. 172, 224–247 (2017).

    Article 
    ADS 

    Google Scholar 

  • Price, G. D. et al. A high-resolution Belemnite geochemical analysis of early Cretaceous (Valanginian–Hauterivian) environmental and climatic perturbations. Geochem. Geophys. Geosyst. 19, 3832–3843 (2018).

    Article 
    CAS 

    Google Scholar 

  • Turetsky, M. R. et al. Carbon release through abrupt permafrost thaw. Nat. Geosci. 13, 138–143 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Van der Kolk, D. A., Whalen, M. T., Wartes, M. A., Newberry, R. J. & McCarthy, P. in Arctic to the Cordillera: Unlocking the Potential. American Association of Petroleum Geologists Pacific Section Meeting, May 8–11, Anchorage, AK, USA, Search and Discovery Article 90125 (American Association of Petroleum Geologists, 2011).

  • Walter Anthony, K. M. et al. 21st-century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes. Nat. Commun. 9, 3262 (2018).

    Article 
    ADS 

    Google Scholar 

  • Cheng, F. et al. Alpine permafrost could account for a quarter of thawed carbon based on Plio-Pleistocene palaeoclimate analogue. Nat. Commun. 13, 1329 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Brouillette, M. How microbes in permafrost could trigger a massive carbon bomb. Nature 591, 360–362 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Murton, J. B. in Climate Change, Observed Impacts on Planet Earth, 3rd edn (ed Letcher, T.) 281–326 (Elsevier, Amsterdam, 2021).

  • Schnyder, J., Ruffell, A., Deconinck, J. F. & Baudin, F. Conjunctive use of spectral gamma-ray logs and clay mineralogy in defining late Jurassic–early Cretaceous palaeoclimate change (Dorset, UK). Palaeogeogr. Palaeoclimatol. Palaeoecol. 229, 303–320 (2006).

    Article 

    Google Scholar 

  • Li, M. et al. Astrochronology of the Anisian stage (Middle Triassic) at the guandao reference section, south china. Earth Planet. Sci. Lett. 482, 591–606 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Li, M. et al. Palaeoclimate proxies for cyclostratigraphy: comparative analysis using a Lower Triassic marine section in South China. Earth–Sci. Rev. 189, 125–146 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Li, M., Hinnov, L. & Kump, L. Acycle: time–series analysis software for palaeoclimate research and education. Comput. Geosci. 127, 12–22 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Laskar, J. et al. A long–term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. 428, 261–285 (2004).

    Article 
    ADS 

    Google Scholar 


  • Source: Ecology - nature.com

    Professor Emeritus Richard Wurtman, influential figure in translational research, dies at 86

    Microbial rewilding in the gut microbiomes of captive ring-tailed lemurs (Lemur catta) in Madagascar