in

Perspectives in machine learning for wildlife conservation

  • 1.

    Ceballos, G., Ehrlich, P. R. & Raven, P. H. Vertebrates on the brink as indicators of biological annihilation and the sixth mass extinction. Proc. Natl Acad. Sci. USA 117, 13596–13602 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 2.

    Committee, T. I. R. L. The IUCN Red List of Threatened Species – Strategic Plan 2017-2020. Tech. Rep., IUCN (2017).

  • 3.

    Witmer, G. W. Wildlife population monitoring: some practical considerations. Wild. Res. 32, 259–263 (2005).

    Google Scholar 

  • 4.

    McEvoy, J. F., Hall, G. P. & McDonald, P. G. Evaluation of unmanned aerial vehicle shape, flight path and camera type for waterfowl surveys: disturbance effects and species recognition. PeerJ 4, e1831 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 5.

    Burghardt, G. M. et al. Perspectives–minimizing observer bias in behavioral studies: a review and recommendations. Ethology 118, 511–517 (2012).

    Google Scholar 

  • 6.

    Giese, M. Effects of human activity on Adelie penguin Pygoscelis adeliae breeding success. Biol. Conserv. 75, 157–164 (1996).

    Google Scholar 

  • 7.

    Köndgen, S. et al. Pandemic human viruses cause decline of endangered great apes. Curr. Biol. 18, 260–264 (2008).

    PubMed 

    Google Scholar 

  • 8.

    Weissensteiner, M. H., Poelstra, J. W. & Wolf, J. B. W. Low-budget ready-to-fly unmanned aerial vehicles: an effective tool for evaluating the nesting status of canopy-breeding bird species. J. Avian Biol. 46, 425–430 (2015).

    Google Scholar 

  • 9.

    Sasse, D. B. Job-related mortality of wildlife workers in the united states, 1937–2000. Wildl. Soc. Bull. 31, 1015–1020 (2003).

  • 10.

    Kays, R., Crofoot, M. C., Jetz, W. & Wikelski, M. Terrestrial animal tracking as an eye on life and planet. Science 348, aaa2478 (2015).

  • 11.

    Altmann, J. Observational study of behavior: sampling methods. Behaviour 49, 227–266 (1974).

    CAS 
    PubMed 

    Google Scholar 

  • 12.

    Hodgson, J. C. et al. Drones count wildlife more accurately and precisely than humans. Methods Ecol. Evolution 9, 1160–1167 (2018).

    Google Scholar 

  • 13.

    Betke, M. et al. Thermal imaging reveals significantly smaller Brazilian free-tailed bat colonies than previously estimated. J. Mammal. 89, 18–24 (2008).

    Google Scholar 

  • 14.

    Rollinson, C. R. et al. Working across space and time: nonstationarity in ecological research and application. Front. Ecol. Environ. 19, 66–72 (2021).

    Google Scholar 

  • 15.

    Junker, J. et al. A severe lack of evidence limits effective conservation of the world’s primates. BioScience 70, 794–803 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 16.

    Sherman, J., Ancrenaz, M. & Meijaard, E. Shifting apes: Conservation and welfare outcomes of Bornean orangutan rescue and release in Kalimantan, Indonesia. J. Nat. Conserv. 55, 125807 (2020).

    Google Scholar 

  • 17.

    O’Donoghue, P. & Rutz, C. Real-time anti-poaching tags could help prevent imminent species extinctions. J. Appl. Ecol. 53, 5–10 (2016).

    PubMed 

    Google Scholar 

  • 18.

    Lahoz-Monfort, J. J. & Magrath, M. J. L. A comprehensive overview of technologies for species and habitat monitoring and conservation. BioScience biab073. https://academic.oup.com/bioscience/advance-article/doi/10.1093/biosci/biab073/6322306 (2021).

  • 19.

    Gottschalk, T., Huettmann, F. & Ehlers, M. Thirty years of analysing and modelling avian habitat relationships using satellite imagery data: a review. Int. J. Remote Sens. 26, 2631–2656 (2005).

    Google Scholar 

  • 20.

    Steenweg, R. et al. Scaling-up camera traps: monitoring the planet’s biodiversity with networks of remote sensors. Front. Ecol. Environ. 15, 26–34 (2017).

    Google Scholar 

  • 21.

    Hausmann, A. et al. Social media data can be used to understand tourists’ preferences for nature-based experiences in protected areas. Conserv. Lett. 11, e12343 (2018).

    Google Scholar 

  • 22.

    Sugai, L. S. M., Silva, T. S. F., Ribeiro, J. W. & Llusia, D. Terrestrial passive acoustic monitoring: review and perspectives. BioScience 69, 15–25 (2018).

    Google Scholar 

  • 23.

    Wikelski, M. et al. Going wild: what a global small-animal tracking system could do for experimental biologists. J. Exp. Biol. 210, 181–186 (2007).

    PubMed 

    Google Scholar 

  • 24.

    Belyaev, M. Y. et al. Development of technology for monitoring animal migration on Earth using scientific equipment on the ISS RS. in 2020 27th Saint Petersburg International Conference on Integrated Navigation Systems (ICINS), 1–7 (IEEE, 2020).

  • 25.

    Harel, R., Loftus, J. C. & Crofoot, M. C. Locomotor compromises maintain group cohesion in baboon troops on the move. Proc. R. Soc. B 288, 20210839 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 26.

    Farley, S. S., Dawson, A., Goring, S. J. & Williams, J. W. Situating ecology as a big-data science: current advances, challenges, and solutions. BioScience 68, 563–576 (2018).

    Google Scholar 

  • 27.

    Lasky, M. et al. Candid critters: Challenges and solutions in a large-scale citizen science camera trap project. Citizen Science: Theory and Practice 6, https://doi.org/10.5334/cstp.343 (2021).

  • 28.

    Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Springer, 2001).

  • 29.

    Christin, S., Hervet, É. & Lecomte, N. Applications for deep learning in ecology. Methods Ecol. Evolution 10, 1632–1644 (2019).

    Google Scholar 

  • 30.

    Kwok, R. Ai empowers conservation biology. Nature 567, 133–135 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 31.

    Kwok, R. Deep learning powers a motion-tracking revolution. Nature 574, 137–139 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 32.

    LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 33.

    Pichler, M., Boreux, V., Klein, A.-M., Schleuning, M. & Hartig, F. Machine learning algorithms to infer trait-matching and predict species interactions in ecological networks. Methods Ecol. Evolution 11, 281–293 (2020).

    Google Scholar 

  • 34.

    Knudby, A., LeDrew, E. & Brenning, A. Predictive mapping of reef fish species richness, diversity and biomass in Zanzibar using IKONOS imagery and machine-learning techniques. Remote Sens. Environ. 114, 1230–1241 (2010).

    ADS 

    Google Scholar 

  • 35.

    Rey, N., Volpi, M., Joost, S. & Tuia, D. Detecting animals in African savanna with UAVs and the crowds. Remote Sens. Environ. 200, 341–351 (2017).

    ADS 

    Google Scholar 

  • 36.

    Beery, S., Morris, D. & Yang, S. Efficient pipeline for camera trap image review. in Proceedings of the Workshop Data Mining and AI for Conservation, Conference for Knowledge Discovery and Data Mining (2019).

  • 37.

    Kellenberger, B., Marcos, D. & Tuia, D. When a few clicks make all the difference: improving weakly-supervised wildlife detection in UAV images. in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2019).

  • 38.

    Schofield, D. et al. Chimpanzee face recognition from videos in the wild using deep learning. Sci. Adv. 5, eaaw0736 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Ditria, E. M. et al. Automating the analysis of fish abundance using object detection: optimizing animal ecology with deep learning. Front. Mar. Sci. 7, 429 (2020).

    Google Scholar 

  • 40.

    Kellenberger, B., Veen, T., Folmer, E. & Tuia, D. 21 000 birds in 4.5 h: efficient large-scale seabird detection with machine learning. Remote Sens. Ecol. Conserv. 7, 445–460 (2021).

    Google Scholar 

  • 41.

    Ahumada, J. A. et al. Wildlife insights: a platform to maximize the potential of camera trap and other passive sensor wildlife data for the planet. Environ. Conserv. 47, 1–6 (2020).

    MathSciNet 

    Google Scholar 

  • 42.

    Eikelboom, J. A. J. et al. Improving the precision and accuracy of animal population estimates with aerial image object detection. Methods Ecol. Evolution 10, 1875–1887 (2019).

    Google Scholar 

  • 43.

    Weinstein, B. G. A computer vision for animal ecology. J. Anim. Ecol. 87, 533–545 (2018).

    PubMed 

    Google Scholar 

  • 44.

    Valletta, J. J., Torney, C., Kings, M., Thornton, A. & Madden, J. Applications of machine learning in animal behaviour studies. Anim. Behav. 124, 203–220 (2017).

    Google Scholar 

  • 45.

    Peters, D. P. C. et al. Harnessing the power of big data: infusing the scientific method with machine learning to transform ecology. Ecosphere 5, art67 (2014).

    Google Scholar 

  • 46.

    Yu, Q. et al. Study becomes insight: ecological learning from machine learning. Methods Ecol. Evol. 12, 2117–2128 (2021).

  • 47.

    Lucas, T. C. D. A translucent box: interpretable machine learning in ecology. Ecol. Monogr. 90, https://doi.org/10.1002/ecm.1422 (2020).

  • 48.

    Reichstein, M. et al. Deep learning and process understanding for data-driven Earth system science. Nature 566, 195–204 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 49.

    Camps-Valls, G., Tuia, D., Zhu, X. X. & Reichstein, M. Deep Learning for the Earth Sciences: A Comprehensive Approach to Remote Sensing, Climate Science and Geosciences (Wiley & Sons, 2021).

  • 50.

    Karpatne, A. et al. Theory-guided data science: A new paradigm for scientific discovery from data. IEEE Trans. Knowl. Data Eng. 29, 2318–2331 (2017).

    Google Scholar 

  • 51.

    Oliver, R. Y., Meyer, C., Ranipeta, A., Winner, K. & Jetz, W. Global and national trends, gaps, and opportunities in documenting and monitoring species distributions. PLoS Biol 19, e3001336 https://doi.org/10.1371/journal.pbio.3001336 (2021).

  • 52.

    Beery, S., Wu, G., Rathod, V., Votel, R. & Huang, J. Context R-CNN: long term temporal context for per-camera object detection. in 2020 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 13075–13085 (2020).

  • 53.

    Norouzzadeh, M. S. et al. Automatically identifying, counting, and describing wild animals in camera-trap images with deep learning. Proc. Natl Acad. Sci. USA 115, E5716–E5725 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 54.

    Schneider, S., Taylor, G. W., Linquist, S. & Kremer, S. C. Past, present and future approaches using computer vision for animal re-identification from camera trap data. Methods Ecol. Evolution 10, 461–470 (2019).

    Google Scholar 

  • 55.

    Beery, S., Van Horn, G. & Perona, P. Recognition in terra incognita. in 2018 European Conference on Computer Vision (ECCV), 456–473 (2018).

  • 56.

    Sugai, L. S. M., Silva, T. S. F., Ribeiro Jr, J. W. & Llusia, D. Terrestrial passive acoustic monitoring: review and perspectives. BioScience 69, 15–25 (2019).

    Google Scholar 

  • 57.

    Wrege, P. H., Rowland, E. D., Keen, S. & Shiu, Y. Acoustic monitoring for conservation in tropical forests: examples from forest elephants. Methods Ecol. Evolution 8, 1292–1301 (2017).

    Google Scholar 

  • 58.

    Desjonquères, C., Gifford, T. & Linke, S. Passive acoustic monitoring as a potential tool to survey animal and ecosystem processes in freshwater environments. Freshw. Biol. 65, 7–19 (2020).

    Google Scholar 

  • 59.

    Davis, G. E. et al. Long-term passive acoustic recordings track the changing distribution of North Atlantic right whales (eubalaena glacialis) from 2004 to 2014. Sci. Rep. 7, 1–12 (2017).

    Google Scholar 

  • 60.

    Wood, C. M. et al. Detecting small changes in populations at landscape scales: a bioacoustic site-occupancy framework. Ecol. Indic. 98, 492–507 (2019).

    Google Scholar 

  • 61.

    Kahl, S., Wood, C. M., Eibl, M. & Klinck, H. Birdnet: a deep learning solution for avian diversity monitoring. Ecol. Inform. 61, 101236 (2021).

    Google Scholar 

  • 62.

    Stowell, D., Wood, M. D., Pamuła, H., Stylianou, Y. & Glotin, H. Automatic acoustic detection of birds through deep learning: the first bird audio detection challenge. Methods Ecol. Evolution 10, 368–380 (2019).

    Google Scholar 

  • 63.

    Ford, J. K. B. in Encyclopedia of Marine Mammals 253–254 (Elsevier, 2018).

  • 64.

    Hughey, L. F., Hein, A. M., Strandburg-Peshkin, A. & Jensen, F. H. Challenges and solutions for studying collective animal behaviour in the wild. Philos. Trans. R. Soc. B: Biol. Sci. 373, 20170005 (2018).

    Google Scholar 

  • 65.

    Williams, H. J. et al. Optimizing the use of biologgers for movement ecology research. J. Anim. Ecol. 89, 186–206 (2020).

    PubMed 

    Google Scholar 

  • 66.

    Korpela, J. et al. Machine learning enables improved runtime and precision for bio-loggers on seabirds. Commun. Biol. 3, 1–9 (2020).

    Google Scholar 

  • 67.

    Yu, H. An evaluation of machine learning classifiers for next-generation, continuous-ethogram smart trackers. Mov. Ecol. 9, 14 (2021).

    Google Scholar 

  • 68.

    Browning, E. et al. Predicting animal behaviour using deep learning: GPS data alone accurately predict diving in seabirds. Methods Ecol. Evolution 9, 681–692 (2018).

    Google Scholar 

  • 69.

    Liu, Z. Y.-C. et al. Deep learning accurately predicts white shark locomotor activity from depth data. Anim. Biotelemetry 7, 1–13 (2019).

    Google Scholar 

  • 70.

    Wang, G. Machine learning for inferring animal behavior from location and movement data. Ecol. Inform. 49, 69–76 (2019).

    Google Scholar 

  • 71.

    Wijeyakulasuriya, D. A., Eisenhauer, E. W., Shaby, B. A. & Hanks, E. M. Machine learning for modeling animal movement. PLoS ONE 30, e0235750 (2020).

  • 72.

    Linchant, J., Lisein, J., Semeki, J., Lejeune, P. & Vermeulen, C. Are unmanned aircraft systems (UASs) the future of wildlife monitoring? A review of accomplishments and challenges. Mammal. Rev. 45, 239–252 (2015).

    Google Scholar 

  • 73.

    Hodgson, J. C., Baylis, S. M., Mott, R., Herrod, A. & Clarke, R. H. Precision wildlife monitoring using unmanned aerial vehicles. Sci. Rep. 6, 1–7 (2016).

    Google Scholar 

  • 74.

    Mathis, A. et al. DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nat. Neurosci. 21, 1281–1289 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 75.

    Graving, J. M. et al. DeepPoseKit, a software toolkit for fast and robust animal pose estimation using deep learning. Elife 8, e47994 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 76.

    Mathis, A., Schneider, S., Lauer, J. & Mathis, M. W. A primer on motion capture with deep learning: principles, pitfalls, and perspectives. Neuron 108, 44–65 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 77.

    Kellenberger, B., Marcos, D. & Tuia, D. Detecting mammals in UAV images: best practices to address a substantially imbalanced dataset with deep learning. Remote Sens. Environ. 216, 139–153 (2018).

    ADS 

    Google Scholar 

  • 78.

    Kellenberger, B., Veen., T., Folmer, E. & Tuia, D. 21,000 birds in 4.5 hours: efficient large-scale seabird detection with machine learning. Remote Sens. Ecol. Conserv. https://doi.org/10.1002/rse2.200 (2021).

  • 79.

    Andrew, W., Greatwood, C. & Burghardt, T. Aerial animal biometrics: individual Friesian cattle recovery and visual identification via an autonomous UAV with onboard deep inference. in International Conference on Intelligent Robots and Systems (IROS) (2019).

  • 80.

    Schroeder, N. M., Panebianco, A., Gonzalez Musso, R. & Carmanchahi, P. An experimental approach to evaluate the potential of drones in terrestrial mammal research: a gregarious ungulate as a study model. R. Soc. open Sci. 7, 191482 (2020).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 81.

    Bennitt, E., Bartlam-Brooks, H. L. A., Hubel, T. Y. & Wilson, A. M. Terrestrial mammalian wildlife responses to Unmanned Aerial Systems approaches. Sci. Rep. 9, 1–10 (2019).

    CAS 

    Google Scholar 

  • 82.

    Deneu, B., Servajean, M., Botella, C. & Joly, A. Evaluation of deep species distribution models using environment and co-occurrences. in International Conference of the Cross-Language Evaluation Forum for European Languages, 213–225 (Springer, 2019).

  • 83.

    Zhu, X. et al. Deep learning in remote sensing: A comprehensive review and list of resources. IEEE Geosci. Remote Sens. Mag. 5, 8–36 (2017).

    Google Scholar 

  • 84.

    Guirado, E., Tabik, S., Rivas, M. L., Alcaraz-Segura, D. & Herrera, F. Whale counting in satellite and aerial images with deep learning. Sci. Rep. 9, 1–12 (2019).

    CAS 

    Google Scholar 

  • 85.

    Duporge, I., Isupova, O., Reece, S., Macdonald, D. W. & Wang, T. Using very-high-resolution satellite imagery and deep learning to detect and count African elephants in heterogeneous landscapes. Remote Sens. Ecol. Conserv. https://doi.org/10.1002/rse2.195 (2020).

  • 86.

    Fretwell, P. T. & Trathan, P. N. Discovery of new colonies by Sentinel2 reveals good and bad news for emperor penguins. Remote Sens. Ecol. Conserv. https://doi.org/10.1002/rse2.176 (2020).

  • 87.

    Brodrick, P. G., Davies, A. B. & Asner, G. P. Uncovering ecological patterns with convolutional neural networks. Trends Ecol. Evolution 34, 734–745 (2019).

    Google Scholar 

  • 88.

    Audebert, N., Le Saux, B. & Lefèvre, S. Deep learning for classification of hyperspectral data: a comparative review. IEEE Geosci. Remote Sens. Mag. 7, 159–173 (2019).

    Google Scholar 

  • 89.

    McKinley, D. C. et al. Citizen science can improve conservation science, natural resource management, and environmental protection. Biol. Conserv. 208, 15–28 (2017).

    Google Scholar 

  • 90.

    Wäldchen, J. & Mäder, P. Machine learning for image based species identification. Methods Ecol. Evolution 9, 2216–2225 (2018).

    MATH 

    Google Scholar 

  • 91.

    Torney, C. J. et al. A comparison of deep learning and citizen science techniques for counting wildlife in aerial survey images. Methods Ecol. Evolution 10, 779–787 (2019).

    Google Scholar 

  • 92.

    Parham, J., Crall, J., Stewart, C., Berger-Wolf, T. & Rubenstein, D. I. Animal population censusing at scale with citizen science and photographic identification. in AAAI Spring Symposium-Technical Report (2017).

  • 93.

    Kühl, H. S. & Burghardt, T. Animal biometrics: quantifying and detecting phenotypic appearance. Trends Ecol. Evolution 28, 432–441 (2013).

    Google Scholar 

  • 94.

    Yu, X. et al. Automated identification of animal species in camera trap images. EURASIP J. Image Video Process. 2013, 1–10 (2013).

    ADS 

    Google Scholar 

  • 95.

    Mac Aodha, O. et al. Bat detective–deep learning tools for bat acoustic signal detection. PLoS Computat. Biol. 14, e1005995 (2018).

    Google Scholar 

  • 96.

    Schindler, F. & Steinhage, V. Identification of animals and recognition of their actions in wildlife videos using deep learning techniques. Ecol. Inform. 61, 101215 (2021).

  • 97.

    Avise, J. C. Molecular Markers, Natural History and Evolution (Springer Science & Business Media, 2012).

  • 98.

    Vidal, M., Wolf, N., Rosenberg, B., Harris, B. P. & Mathis, A. Perspectives on Individual Animal Identification from Biology and Computer Vision. Integr. Comp. Biol. 61, 900–916 https://doi.org/10.1093/icb/icab107 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 99.

    Berger-Wolf, T. Y. et al. Wildbook: crowdsourcing, computer vision, and data science for conservation. Preprint at https://arxiv.org/abs/1710.08880 (2017).

  • 100.

    Parham, J. et al. An animal detection pipeline for identification. in IEEE Winter Conference on Applications of Computer Vision (WACV), 1075–1083 (IEEE, 2018).

  • 101.

    Weideman, H. et al. Extracting identifying contours for African elephants and humpback whales using a learned appearance model. in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) (2020).

  • 102.

    Brust, C.-A. et al. Towards automated visual monitoring of individual gorillas in the wild. in 2017 IEEE International Conference on Computer Vision Workshops (ICCVW), 2820–2830 (2017).

  • 103.

    Li, S., Li, J., Tang, H., Qian, R. & Lin, W. ATRW: a benchmark for Amur tiger re-identification in the wild. in 2020 ACM International Conference on Multimedia, 2590–2598 (2020).

  • 104.

    Bendale, A. & Boult, T. E. Towards open set deep networks. in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1563–1572 (2016).

  • 105.

    Mathis, M. W. & Mathis, A. Deep learning tools for the measurement of animal behavior in neuroscience. Curr. Opin. Neurobiol. 60, 1–11 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 106.

    Sanakoyeu, A., Khalidov, V., McCarthy, M. S., Vedaldi, A. & Neverova, N. Transferring dense pose to proximal animal classes. in 2020 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 5233–5242 (2020).

  • 107.

    Zuffi, S., Kanazawa, A., Jacobs, D. W. & Black, M. J. 3D menagerie: modeling the 3D shape and pose of animals. in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 6365–6373 (2017).

  • 108.

    Biggs, B., Roddick, T., Fitzgibbon, A. & Cipolla, R. Creatures great and smal: recovering the shape and motion of animals from video. in 2018 Asian Conference on Computer Vision (ACCV), 3–19 (Springer, 2018).

  • 109.

    Biggs, B., Boyne, O., Charles, J., Fitzgibbon, A. & Cipolla, R. Who left the dogs out? 3D animal reconstruction with expectation maximization in the loop. in 2020 European Conference on Computer Vision (ECCV), 195–211 (Springer, 2020).

  • 110.

    Zuffi, S., Kanazawa, A., Berger-Wolf, T. & Black, M. J. Three-D safari: learning to estimate zebra pose, shape, and texture from images” in the wild”. in 2019 IEEE International Conference on Computer Vision (ICCV), 5359–5368 (2019).

  • 111.

    Wang, Y., Kolotouros, N., Daniilidis, K. & Badger, M. Birds of a feather: capturing avian shape models from images. in 2021 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 14739–14749 (2021).

  • 112.

    Haalck, L., Mangan, M., Webb, B. & Risse, B. Towards image-based animal tracking in natural environments using a freely moving camera. J. Neurosci. methods 330, 108455 (2020).

    PubMed 

    Google Scholar 

  • 113.

    Pettorelli, N. et al. Satellite remote sensing for applied ecologists: opportunities and challenges. J. Appl. Ecol. 51, 839–848 (2014).

    Google Scholar 

  • 114.

    Davies, A. B., Tambling, C. J., Kerley, G. I. H. & Asner, G. P. Effects of vegetation structure on the location of lion kill sites in African thicket. PLoS ONE 11, e0149098 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 115.

    Froidevaux, J. S. P., Zellweger, F., Bollmann, K., Jones, G. & Obrist, M. K. From field surveys to LiDAR: shining a light on how bats respond to forest structure. Remote Sens. Environ. 175, 242–250 (2016).

    ADS 

    Google Scholar 

  • 116.

    Risse, B., Mangan, M., Stürzl, W. & Webb, B. Software to convert terrestrial LiDAR scans of natural environments into photorealistic meshes. Environ. Model. Softw. 99, 88–100 (2018).

    Google Scholar 

  • 117.

    Haalck, L. & Risse, B. Embedded dense camera trajectories in multi-video image mosaics by geodesic interpolation-based reintegration. in 2021 IEEE Winter Conference on Applications of Computer Vision (WACV), 1849–1858 (2021).

  • 118.

    Schonberger, J. L. & Frahm, J.-M. Structure-from-motion revisited. in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 4104–4113 (2016).

  • 119.

    Mur-Artal, R. & Tardós, J. D. ORB-SLAM2: an open-source SLAM system for monocular, stereo, and RGB-D cameras. IEEE Trans. Robot. 33, 1255–1262 (2017).

    Google Scholar 

  • 120.

    Kuppala, K., Banda, S. & Barige, T. R. An overview of deep learning methods for image registration with focus on feature-based approaches. Int. J. Image Data Fusion 11, 113–135 (2020).

    ADS 

    Google Scholar 

  • 121.

    Lisein, J., Linchant, J., Lejeune, P., Bouché, P. & Vermeulen, C. Aerial surveys using an unmanned aerial system (UAS): comparison of different methods for estimating the surface area of sampling strips. Tropical Conserv. Sci. 6, 506–520 (2013).

    Google Scholar 

  • 122.

    Wu, C. Critical configurations for radial distortion self-calibration. in 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 25–32 (2014).

  • 123.

    Ferrer, J., Elibol, A., Delaunoy, O., Gracias, N. & Garcia, R. Large-area photo-mosaics using global alignment and navigation data. in Mts/IEEE Oceans Conference, 1–9 (2007).

  • 124.

    Guisan, A. & Zimmermann, N. E. Predictive habitat distribution models in ecology. Ecol. Model. 135, 147–186 (2000).

    Google Scholar 

  • 125.

    Lehmann, A., Overton, J. M. & Austin, M. P. Regression models for spatial prediction: their role for biodiversity and conservation. Biodivers. Conserv. 11, 2085–2092 (2002).

  • 126.

    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

    MATH 

    Google Scholar 

  • 127.

    Parravicini, V. et al. Global patterns and predictors of tropical reef fish species richness. Ecography 36, 1254–1262 (2013).

    Google Scholar 

  • 128.

    Smoliński, S. & Radtke, K. Spatial prediction of demersal fish diversity in the baltic sea: comparison of machine learning and regression-based techniques. ICES J. Mar. Sci. 74, 102–111 (2017).

    Google Scholar 

  • 129.

    Čandek, K., Čandek, U. P. & Kuntner, M. Machine learning approaches identify male body size as the most accurate predictor of species richness. BMC Biol. 18, 1–16 (2020).

    Google Scholar 

  • 130.

    Baltensperger, A. P. & Huettmann, F. Predictive spatial niche and biodiversity hotspot models for small mammal communities in Alaska: applying machine-learning to conservation planning. Landscape Ecol. 30, 681–697 (2015).

  • 131.

    Faisal, A., Dondelinger, F., Husmeier, D. & Beale, C. M. Inferring species interaction networks from species abundance data: a comparative evaluation of various statistical and machine learning methods. Ecol. Inform. 5, 451–464 (2010).

    Google Scholar 

  • 132.

    Van Horn, G. et al. The inaturalist species classification and detection dataset. in 2018 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 8769–8778 (2018).

  • 133.

    Copas, K. et al. Training machines to improve species identification using GBIF-mediated datasets. in AGU Fall Meeting Abstracts, Vol. 2019, IN53C–0758 (2019).

  • 134.

    Lennox, R. J. et al. A novel framework to protect animal data in a world of ecosurveillance. BioScience 70, 468–476 (2020).

    Google Scholar 

  • 135.

    Strubell, E., Ganesh, A. & McCallum, A. Energy and policy considerations for deep learning in NLP. in Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, 3645–3650 (2019).

  • 136.

    Samek, W., Montavon, G., Vedaldi, A., Hansen, L. K. & Müller, K.-R. Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, Vol. 11700 (Springer Nature, 2019).

  • 137.

    Swanson, A. et al. Snapshot Serengeti, high-frequency annotated camera trap images of 40 mammalian species in an African savanna. Sci. data 2, 1–14 (2015).

    Google Scholar 

  • 138.

    de Lutio, R. et al. Digital taxonomist: identifying plant species in community scientists’ photographs. ISPRS J. Photogramm. Remote Sens. 182, 112–121 (2021).

  • 139.

    Mac Aodha, O., Cole, E. & Perona, P. Presence-only geographical priors for fine-grained image classification. in Proceedings of the IEEE/CVF International Conference on Computer Vision, 9596–9606 (2019).

  • 140.

    Gurumurthy, S. et al. Exploiting Data and Human Knowledge for Predicting Wildlife Poaching. in Proceedings of the 1st ACM SIGCAS Conference on Computing and Sustainable Societies, 1–8, https://doi.org/10.1145/3209811.3209879 (ACM, 2018).

  • 141.

    Datta, S., Anderson, D., Branson, K., Perona, P. & Leifer, A. Computational neuroethology: a call to action. Neuron 104, 11–24 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 142.

    Joska, D. et al. AcinoSet: a 3D pose estimation dataset and baseline models for Cheetahs in the wild. 2021 IEEE International Conference on Robotics and Automation (ICRA) Preprint at https://arxiv.org/abs/2103.13282 (IEEE, Xi’an, China, 2021).

  • 143.

    Chen, Q. & Koltun, V. Photographic image synthesis with cascaded refinement networks. in 2019 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1511–1520 (2017).

  • 144.

    Lee, J., Hwangbo, J., Wellhausen, L., Koltun, V. & Hutter, M. Learning quadrupedal locomotion over challenging terrain. Sci. Robot. 5, eabc5986 (2020).

  • 145.

    Botella, C., Joly, A., Bonnet, P., Munoz, F. & Monestiez, P. Jointly estimating spatial sampling effort and habitat suitability for multiple species from opportunistic presence-only data. Methods Ecol. Evolution 12, 933–945 (2021).

    Google Scholar 

  • 146.

    Beery, S., Cole, E., Parker, J., Perona, P. & Winner, K. Species distribution modeling for machine learning practitioners: a review. in Proceedings of the 4th ACM SIGCAS Conference on Computing and Sustainable Societies (2021).

  • 147.

    Arzoumanian, Z., Holmberg, J. & Norman, B. An astronomical pattern-matching algorithm for computer-aided identification of whale sharks Rhincodon typus. J. Appl. Ecol. 42, 999–1011 (2005).

    Google Scholar 

  • 148.

    de Knegt, H. J., Eikelboom, J. A. J., van Langevelde, F., Spruyt, W. F. & Prins, H. H. T. Timely poacher detection and localization using sentinel animal movement. Sci. Rep. 11, 1–11 (2021).

    Google Scholar 

  • 149.

    Walter, T. & Couzin, I. D. TRex, a fast multi-animal tracking system with markerless identification, and 2D estimation of posture and visual fields. eLife 10, e64000 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 150.

    Kellenberger, B., Tuia, D. & Morris, D. AIDE: accelerating image-based ecological surveys with interactive machine learning. Methods Ecol. Evolution 11, 1716–1727 (2020).

    Google Scholar 

  • 151.

    Settles, B. Active learning. Synth. lectures Artif. Intell. Mach. Learn. 6, 1–114 (2012).

    MathSciNet 
    MATH 

    Google Scholar 

  • 152.

    Ofli, F. et al. Combining human computing and machine learning to make sense of big (aerial) data for disaster response. Big Data 4, 47–59 (2016).

    PubMed 

    Google Scholar 

  • 153.

    Simpson, R., Page, K. R. & De Roure, D. Zooniverse: observing the world’s largest citizen science platform. in Proceedings of the 23rd International Conference on World Wide Web 1049–1054 (2014).

  • 154.

    Pocock, M. J. O., Roy, H. E., Preston, C. D. & Roy, D. B. The biological records centre: a pioneer of citizen science. Biol. J. Linn. Soc. 115, 475–493 (2015).

    Google Scholar 


  • Source: Ecology - nature.com

    Storing frozen water to adapt to climate change

    Climate change threatens native potential agroforestry plant species in Brazil