in

Phase synchronization of chlorophyll and total phosphorus oscillations as an indicator of the transformation of a lake ecosystem

  • Sakamoto, M. Primary production by phytoplankton community in some Japanese lakes and its dependence on lake depth. Archiv für Hydrobilogie. 62, 1–28 (1966).

    Google Scholar 

  • Vollenweider, R. A. Scientific fundamentals of the eutrophication of lakes and flowing waters, with particular reference to nitrogen and phosphorus as factors in eutrophication (Organisation for Economic Co-operation and Development, 1968).

    Google Scholar 

  • Edmondson, W. T. Phosphorus, nitrogen, and algae in Lake Washington after diversion of sewage. Science 169, 690–691 (1970).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Dillon, P. J. & Rigler, F. H. The phosphorus-chlorophyll relationship in lakes. Limnol. Oceanogr. 19, 767–773 (1974).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Jones, J. R. & Bachmann, R. W. Prediction of phosphorus and chlorophyll levels in lakes. J. Water Pollut. Control Feder. 48, 2176–2182 (1976).

    CAS 

    Google Scholar 

  • Schindler, D. W. Evolution of phosphorus limitation in lakes. Science 195, 260–262 (1977).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Filstrup, C. T. & Downing, J. A. Relationship of chlorophyll to phosphorus and nitrogen in nutrient-rich lakes. Inland Waters. 7, 385–400 (2017).

    CAS 
    Article 

    Google Scholar 

  • Schindler, D. W. Recent advances in the understanding and management of eutrophication. Limnol. Oceanogr. 51, 356–363 (2006).

    ADS 
    Article 

    Google Scholar 

  • Quinlan, R. et al. Relationships of total phosphorus and chlorophyll in lakes worldwide. Limnol. Oceanogr. 66, 392–404 (2020).

    ADS 
    Article 

    Google Scholar 

  • Yuan, L. L. & Jones, J. R. Rethinking phosphorus–chlorophyll relationships in lakes. Limnol. Oceanogr. 65, 1847–1857 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Carlson, R. E. A trophic state index for lakes. Limnol. Oceanogr. 11, 361–369 (1977).

    ADS 
    Article 

    Google Scholar 

  • Neveux, J. et al. Comparison of chlorophyll and phaeopigment determinations by spectrophotometric, fluorometric, spectrofluorometric and HPLC methods. Mar. Microb. Food Webs 4, 217–238 (1990).

    Google Scholar 

  • Lampert, W. & Sommer, U. Limnoecology (Oxford University, 2007).

    Google Scholar 

  • Kovalevskaya, R. Z., Zhukava, H. A. & Adamovich, B. V. Modification of the method of spectrophotometric determination of chlorophyll a in the suspended matter of water bodies. J. Appl. Spectrosc. 87, 72–78 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Søndergaard, M., Lauridsen, T. L., Johansson, L. S. & Jeppesen, E. Nitrogen or phosphorus limitation in lakes and its impact on phytoplankton biomass and submerged macrophyte cover. Hydrobiologia 795, 35–48 (2017).

    Article 

    Google Scholar 

  • Søndergaard, M., Jensen, J. P., Jeppesen, E. & Møller. P. H. Seasonal dynamics in the concentrations and retention of phosphorus in shallow Danish lakes after reduced loading. Aquat. Ecosyst. Health Manag. 5(1), 19–29 (2002).

  • Magumba, D., Atsushi, M., Michiko, T., Akira, K. & Masao, K. Relationships between Chlorophyll-a, phosphorus and nitrogen as fundamentals for controlling phytoplankton biomass in lakes. Environ. Control. Biol. 51(4), 179–185 (2013).

    CAS 
    Article 

    Google Scholar 

  • Smith, V. H. & Shapiro, J. Chlorophyll-phosphorus relations in individual lakes. Their importance to lake restoration strategies. Environ. Sci. Technol. 15(4), 444–451 (1981).

  • Pothoven, S. A. & Vanderploeg, H. A. Seasonal patterns for Secchi depth, chlorophyll a, total phosphorus, and nutrient limitation differ between nearshore and offshore in Lake Michigan. J. Great Lakes Res. 46, 519–527 (2020).

    CAS 
    Article 

    Google Scholar 

  • Søndergaard, M. & Jeppesen, E. Lake Søbygaard, Denmark: phosphorus dynamics during the first 35 years after an external loading reduction. In: Internal Phosphorus Loading: Causes, Case Studies, and Management (ed. Steinman, A.D. & Spears, B. M.) 285–299 (J. Ross, Plantation, 2020).

  • Guildford, S. J. & Hecky, R. E. Total nitrogen, total phosphorus, and nutrient limitation in lakes and oceans: Is there a common relationship?. Limnol. Oceanogr. 45, 1213–1223 (2000).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Jones, J.R. et al. Nutrients, seston, and transparency of Missouri reservoirs and oxbow lakes. An analysis of regional limnology. Lake Reser. Manag. 24, 155–180 (2008).

  • Pikovsky, A., Rosenblum, M. & Kurths, J. Synchronization. A universal concept in nonlinear sciences (Cambridge University, 2001).

    Book 

    Google Scholar 

  • Kuramoto, Y. Chemical Oscillations, Waves, and Turbulence (Springer, 1984).

    Book 

    Google Scholar 

  • Sazonov, A. V. et al. An investigation of the phase locking index for measuring of interdependency of cortical source signals recorded in the EEG. Biol. Cybern. 100, 129–146 (2009).

    Article 

    Google Scholar 

  • Medvinsky, A. B. et al. Temperature as a factor affecting fluctuations and predictability of the abundance of lake bacterioplankton. Ecol. Complex. 32, 90–98 (2017).

    Article 

    Google Scholar 

  • Zhukova, T. V. & Ostapenya, A. P. Estimation of efficiency of nature protection measures in water catchment area of the Naroch lakes. Natural Resources. 3, 68–73 (2000) ((in Russian)).

    Google Scholar 

  • Burlakova, L. E., Karatayev, A. Y. & Padilla, D. K. Changes in the distribution and abundance of Dreissena polymorpha within lakes through time. Hydrobiologia 571, 133–146 (2006).

    Article 

    Google Scholar 

  • Ostapenia, A. P. et al. Bentification of lake ecosystem: causes, mechanisms, possible consequences, prospect for future research. Trudy BGU. 7, 135–148 (2012) ((in Russian)).

    Google Scholar 

  • Karatayev, A.Y., Burlakova, L.E. & Padilla, D.K. Impacts of Zebra Mussels on aquatic communities and their role as ecosystem engineers. In: Leppäkoski, E., Gollasch, S., Olenin, S. (eds) Invasive Aquatic Species of Europe. Distribution, Impacts and Management (Springer, Dordrecht, 2002).

  • Adamovich, B. V. et al. The divergence of chlorophyll dynamics in the Naroch Lakes. Biophysics 60, 632–638 (2015).

    CAS 
    Article 

    Google Scholar 

  • Zhukova, T. V. et al. Long-term dynamics of suspended matter in Naroch Lakes: Trend or intervation. Inland Water Biol. 10, 250–257 (2017).

    Article 

    Google Scholar 

  • Adamovich, B. V. et al. Eutrophication, oligotrophication, and benthiphication in Naroch Lakes: 40 years of monitoring. J. Siber. Federal Univ. Biol. 10, 379–394 (2017).

    Article 

    Google Scholar 

  • Ostapenya A.P. et al. Ecological passport of Lake Myastro (EcoMir, Minsk, 1994) (in Russian).

  • Kantz, H. & Schreiber, T. Nonlinear time series analysis (Cambridge University, 1997).

    MATH 

    Google Scholar 

  • Kot, M. Elements of mathematical ecology (Cambridge University, 2001).

    Book 

    Google Scholar 

  • Turchin, P. Complex population dynamics. A Theoretical/Empirical Synthesis (Princeton University, Princeton, 2003).

    MATH 

    Google Scholar 

  • Cazelles, B. & Stone, L. Detection of imperfect population synchrony in an uncertain world. J. Anim. Ecol. 72, 953–968 (2003).

    Article 

    Google Scholar 

  • Karatayev, A. Y., Burlakova, L. & Padilla, D. K. The effects of Dreissena polymorpha (Pallas) invasion on aquatic communities in Eastern Europe. J. Shellfish Res. 16, 187–203 (1997).

    Google Scholar 

  • Lia, J. et al. Benthic invaders control the phosphorus cycle in the world’s largest freshwater ecosystem. PNAS 118(6), e2008223118. https://doi.org/10.1073/pnas.2008223118 (2021).

    CAS 
    Article 

    Google Scholar 

  • Mikheyeva, T. M. et al. The dynamics of freshwater phytoplankton stability in the Naroch Lakes (Belarus). Ecol. Ind. 81, 481–490 (2017).

    Article 

    Google Scholar 

  • Harris, P. H. Phytoplankton ecology. Structure, functioning and flucttuation (Chapman & Hall, London, New York, 1986).

  • Jeppesen, E., Jensen, J. P., Søndergaard, M. & Lauridsen, T. L. Response of fish and plankton to nutrient loading reduction in eight shallow Danish lakes with special emphasis on seasonal dynamics. Freshw. Biol. 50, 1616–1627 (2005).

    CAS 
    Article 

    Google Scholar 

  • Nezlin, N.P. & Li, B-L. Time-series analysis of remote-sensed chlorophyll and environmental factors in the Santa Monica–San Pedro Basin off Southern California. J. Mar. Syst. 39, 185–202 (2003).

  • French, T. D. & Petticrew, E. L. Chlorophyll a seasonality in four shallow eutrophic lakes (northern British Columbia, Canada) and the critical roles of internal phosphorus loading and temperature. Hydrobiologia 575, 285–299 (2007).

    CAS 
    Article 

    Google Scholar 

  • SCOR-UNESCO Working Group no. 17. Determination of photosynthetic pigments in sea-water. Monographs on Oceanologic Methodology 9–18 (UNESSCO, Paris, 1966).

  • Semenov, A. D. Guide on the chemical analysis of continental surface waters (Gidrometeoizdat, 1977) ((in Russian)).

    Google Scholar 

  • Wetzel, R. G. & Likens, G. E. Limnological analysis (Springer, 2000).

    Book 

    Google Scholar 

  • Steffen, M. & Bartz-Beielstein, T. imputeTS: time series missing value imputation in R. R J. 9(1), 207–218 (2017).

    Article 

    Google Scholar 

  • R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2020).


  • Source: Ecology - nature.com

    MIT engineers design surfaces that make water boil more efficiently

    Comparative efficacy of phosphorous supplements with phosphate solubilizing bacteria for optimizing wheat yield in calcareous soils