in

Photoperiod-driven rhythms reveal multi-decadal stability of phytoplankton communities in a highly fluctuating coastal environment

  • Hoegh-Guldberg, O. & Bruno, J. F. The impact of climate change on the world’s marine ecosystems. Science 328, 1523–1528 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Rahmstorf, S. & Coumou, D. Increase of extreme events in a warming world. Proc. Natl. Acad. Sci. USA 108, 17905–17909 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Toseland, A. et al. The impact of temperature on marine phytoplankton resource allocation and metabolism. Nat. Clim. Change 3, 979–984 (2013).

    ADS 
    CAS 

    Google Scholar 

  • Doney, S. C. Plankton in a warmer world. Nature 444, 695–696 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Harley, C. D. G. et al. The impacts of climate change in coastal marine systems: Climate change in coastal marine systems. Ecol. Lett. 9, 228–241 (2006).

    ADS 
    PubMed 

    Google Scholar 

  • Vitousek, P. M., Mooney, H. A., Lubchenco, J. & Melillo, J. M. Human domination of Earth’s ecosystems. Science 277, 494–499 (1997).

    CAS 

    Google Scholar 

  • Zingone, A., Phlips, E. J. & Harrison, P. J. Multiscale variability of twenty-two coastal phytoplankton time series: A global scale comparison. Estuaries Coasts 33, 224–229 (2010).

    CAS 

    Google Scholar 

  • Cloern, J. E. et al. Human activities and climate variability drive fast-paced change across the world’s estuarine-coastal ecosystems. Glob. Change Biol. 22, 513–529 (2016).

    ADS 

    Google Scholar 

  • Cloern, J. E. & Jassby, A. D. Patterns and scales of phytoplankton variability in estuarine-coastal ecosystems. Estuaries Coasts 33, 230–241 (2010).

    CAS 

    Google Scholar 

  • Romagnan, J.-B. et al. Comprehensive model of annual plankton succession based on the whole-plankton time series approach. PLoS ONE 10, e0119219 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Guadayol, Ò. et al. Responses of coastal osmotrophic planktonic communities to simulated events of turbulence and nutrient load throughout a year. J. Plankton Res. 31, 583–600 (2009).

    CAS 

    Google Scholar 

  • Totti, C. et al. Phytoplankton communities in the northwestern Adriatic Sea: Interdecadal variability over a 30-years period (1988–2016) and relationships with meteoclimatic drivers. J. Mar. Syst. 193, 137–153 (2019).

    Google Scholar 

  • Zingone, A. et al. Coastal phytoplankton do not rest in winter. Estuaries Coasts 33, 342–361 (2010).

    CAS 

    Google Scholar 

  • Widdicombe, C. E., Eloire, D., Harbour, D., Harris, R. P. & Somerfield, P. J. Long-term phytoplankton community dynamics in the Western English Channel. J. Plankton Res. 32, 643–655 (2010).

    Google Scholar 

  • Harding, L. W. et al. Variable climatic conditions dominate recent phytoplankton dynamics in Chesapeake Bay. Sci. Rep. 6, 1–16 (2016).

    Google Scholar 

  • Suikkanen, S., Laamanen, M. & Huttunen, M. Long-term changes in summer phytoplankton communities of the open northern Baltic Sea. Estuar. Coast. Shelf Sci. 71, 580–592 (2007).

    ADS 

    Google Scholar 

  • Wasmund, N., Tuimala, J., Suikkanen, S., Vandepitte, L. & Kraberg, A. Long-term trends in phytoplankton composition in the western and central Baltic Sea. J. Mar. Syst. 87, 145–159 (2011).

    Google Scholar 

  • Cloern, J. E. Turbidity as a control on phytoplankton biomass and productivity in estuaries. Cont. Shelf Res. 7, 1367–1381 (1987).

    ADS 

    Google Scholar 

  • Barbosa, A. B., Domingues, R. B. & Galvão, H. M. Environmental forcing of phytoplankton in a Mediterranean estuary (Guadiana Estuary, South-western Iberia): A decadal study of anthropogenic and climatic influences. Estuaries Coasts 33, 324–341 (2010).

    CAS 

    Google Scholar 

  • Barrera-Alba, J. J., Abreu, P. C. & Tenenbaum, D. R. Seasonal and inter-annual variability in phytoplankton over a 22-year period in a tropical coastal region in the southwestern Atlantic Ocean. Cont. Shelf Res. 176, 51–63 (2019).

    ADS 

    Google Scholar 

  • Brito, A. C. et al. Changes in the phytoplankton composition in a temperate estuarine system (1960 to 2010). Estuaries Coasts 38, 1678–1691 (2015).

    CAS 

    Google Scholar 

  • Zingone, A. et al. Increasing the quality, comparability and accessibility of phytoplankton species composition time-series data. Estuar. Coast. Shelf Sci. 162, 151–160 (2015).

    ADS 

    Google Scholar 

  • Smayda, T. J. Phytoplankton species succession. In The Physiological Ecology of Phytoplankton 493–570 (Blackwell Scientific Publications, 1980).

    Google Scholar 

  • Kremer, C. T. & Klausmeier, C. A. Species packing in eco-evolutionary models of seasonally fluctuating environments. Ecol. Lett. 20, 1158–1168 (2017).

    PubMed 

    Google Scholar 

  • Sakavara, A., Tsirtsis, G., Roelke, D. L., Mancy, R. & Spatharis, S. Lumpy species coexistence arises robustly in fluctuating resource environments. Proc. Natl. Acad. Sci. USA 115, 738–743 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Wiltshire, K. H. et al. Resilience of North Sea phytoplankton spring bloom dynamics: An analysis of long-term data at Helgoland Roads. Limnol. Oceanogr. 53, 1294–1302 (2008).

    ADS 

    Google Scholar 

  • Tsakalakis, I., Pahlow, M., Oschlies, A., Blasius, B. & Ryabov, A. B. Diel light cycle as a key factor for modelling phytoplankton biogeography and diversity. Ecol. Model. 384, 241–248 (2018).

    Google Scholar 

  • Platt, T., Fuentes-Yaco, C. & Frank, K. T. Spring algal bloom and larval fish survival. Nature 423, 398–399 (2003).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Edwards, M. & Richardson, A. J. Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430, 881–884 (2004).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Vantrepotte, V. & Melin, F. Temporal variability of 10-year global SeaWiFS time-series of phytoplankton chlorophyll a concentration. ICES J. Mar. Sci. 66, 1547–1556 (2009).

    Google Scholar 

  • McQuatters-Gollop, A. et al. From microscope to management: The critical value of plankton taxonomy to marine policy and biodiversity conservation. Mar. Policy 83, 1–10 (2017).

    Google Scholar 

  • Edwards, K. F., Litchman, E. & Klausmeier, C. A. Functional traits explain phytoplankton community structure and seasonal dynamics in a marine ecosystem. Ecol. Lett. 16, 56–63 (2013).

    PubMed 

    Google Scholar 

  • Wentzky, V. C., Tittel, J., Jäger, C. G., Bruggeman, J. & Rinke, K. Seasonal succession of functional traits in phytoplankton communities and their interaction with trophic state. J. Ecol. 108, 1649–1663 (2020).

    CAS 

    Google Scholar 

  • Karl, D. M. Oceanic ecosystem time-series programs: Ten lessons learned. Oceanography 23, 104–125 (2010).

    Google Scholar 

  • d’Alcalà, M. R. et al. Seasonal patterns in plankton communities in a pluriannual time series at a coastal Mediterranean site (Gulf of Naples): An attempt to discern recurrences and trends. Sci. Mar. 68, 65–83 (2004).

    Google Scholar 

  • Mazzocchi, M. G., Dubroca, L., García-Comas, C., Capua, I. D. & Ribera d’Alcalà, M. Stability and resilience in coastal copepod assemblages: The case of the Mediterranean long-term ecological research at Station MC (LTER-MC). Prog. Oceanogr. 97–100, 135–151 (2012).

    ADS 

    Google Scholar 

  • Thioulouse, J., Simier, M. & Chessel, D. Simultaneous analysis of a sequence of paired ecological tables. Ecology 85, 272–283 (2004).

    Google Scholar 

  • Lindeman, R. H., Merenda, P. F. & Gold, R. Z. Introduction to bivariate and multivariate analysis 119 (Scott Foresman Co, 1980).

    MATH 

    Google Scholar 

  • Longobardi, L. From Data to Knowledge: Integrating Observational Data to Trace Phytoplankton Dynamics in a Changing World (Open Univ, 2021).

    Google Scholar 

  • Pisano, A. et al. New evidence of mediterranean climate change and variability from sea surface temperature observations. Remote Sens. 12, 132 (2020).

    ADS 

    Google Scholar 

  • Zingone, A. et al. Time series and beyond: multifaceted plankton research at a marine Mediterranean LTER site. Nat. Conserv. 34, 273–310 (2019).

    Google Scholar 

  • Zingone, A., Licandro, P. & Sarno, D. Revising paradigms and myths of phytoplankton ecology using biological time series. In Mediterranean Biological Time Series. CIESM Workshop Monographs 109–114 (2003).

  • Cianelli, D. et al. Disentangling physical and biological drivers of phytoplankton dynamics in a coastal system. Sci. Rep. 7, 1–15 (2017).

    CAS 

    Google Scholar 

  • Zingone, A., Casotti, R., d’Alcalà, M. R., Scardi, M. & Marino, D. ‘St Martin’s Summer’: The case of an autumn phytoplankton bloom in the Gulf of Naples (Mediterranean Sea). J. Plankton Res. 17, 575–593 (1995).

    Google Scholar 

  • Margalef, R. Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanol. Acta 1, 493–509 (1978).

    Google Scholar 

  • Sommer, U. et al. Beyond the plankton ecology group (PEG) model: Mechanisms driving plankton succession. Annu. Rev. Ecol. Evol. Syst. 43, 429–448 (2012).

    Google Scholar 

  • Reynolds, C. S. What factors influence the species composition of phytoplankton in lakes of different trophic status? In Phytoplankton and Trophic Gradients (eds Alvarez-Cobelas, M. et al.) 11–26 (Springer, 1998).

    Google Scholar 

  • Zingone, A., Montresor, M. & Marino, D. Summer phytoplankton physiognomy in coastal waters of the Gulf of Naples. Mar. Ecol. 11, 157–172 (1990).

    ADS 

    Google Scholar 

  • Harding, L. W. et al. Long-term trends of nutrients and phytoplankton in Chesapeake Bay. Estuaries Coasts 39, 664–681 (2016).

    CAS 

    Google Scholar 

  • Andersen, J. H. et al. Long-term temporal and spatial trends in eutrophication status of the Baltic Sea. Biol. Rev. 92, 135–149 (2017).

    PubMed 

    Google Scholar 

  • Giner, C. R. et al. Quantifying long-term recurrence in planktonic microbial eukaryotes. Mol. Ecol. https://doi.org/10.1111/mec.14929 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Ward, C. S. et al. Annual community patterns are driven by seasonal switching between closely related marine bacteria. ISME J. 11, 1412–1422 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Gilbert, J. A. et al. Defining seasonal marine microbial community dynamics. ISME J. 6, 298–308 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Beaugrand, G. et al. Synchronous marine pelagic regime shifts in the Northern Hemisphere. Philos. Trans. R. Soc. B 370, 20130272 (2015).

    Google Scholar 

  • Conversi, A. et al. The Mediterranean Sea Regime Shift at the End of the 1980s, and intriguing parallelisms with other European Basins. PLoS ONE 5, e10633 (2010).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Eilertsen, H., Sandberg, S. & Tøllefsen, H. Photoperiodic control of diatom spore growth; a theory to explain the onset of phytoplankton blooms. Mar. Ecol. Prog. Ser. 116, 303–307 (1995).

    ADS 

    Google Scholar 

  • Hensen, V. Ueber die Bestimmung des Plankton’s oder des im Meere treibenden Materials an Pflanzen und Thieren (Kiel Publishers, 1887).

    Google Scholar 

  • Andersen, D. M. & Keafer, B. A. An endogenous annual clock in the toxic marine dinoflagellate Gonyaulax tamarensis. Nature 325, 616–617 (1987).

    ADS 

    Google Scholar 

  • Kremp, A. & Anderson, D. M. Factors regulating germination of resting cysts of the spring bloom dinoflagellate Scrippsiella hangoei from the northern Baltic Sea. J. Plankton Res. 22, 1311–1327 (2000).

    Google Scholar 

  • Aubry, F. B. et al. Plankton communities in the northern Adriatic Sea: Patterns and changes over the last 30 years. Estuar. Coast. Shelf Sci. 115, 125–137 (2012).

    ADS 

    Google Scholar 

  • Gutiérrez-Rodríguez, A. et al. Growth and grazing rate dynamics of major phytoplankton groups in an oligotrophic coastal site. Estuar. Coast. Shelf Sci. 95, 77–87 (2011).

    ADS 

    Google Scholar 

  • Brannock, P. M., Ortmann, A. C., Moss, A. G. & Halanych, K. M. Metabarcoding reveals environmental factors influencing spatio-temporal variation in pelagic micro-eukaryotes. Mol. Ecol. 25, 3593–3604 (2016).

    PubMed 

    Google Scholar 

  • Piredda, R. et al. Diversity and temporal patterns of planktonic protist assemblages at a Mediterranean Long Term Ecological Research site. FEMS Microbiol. Ecol. 93, fiw200 (2017).

    PubMed 

    Google Scholar 

  • Lambert, S. et al. Rhythmicity of coastal marine picoeukaryotes, bacteria and archaea despite irregular environmental perturbations. ISME J. 13, 388–401 (2019).

    PubMed 

    Google Scholar 

  • Hiltz, M., Bates, S. S. & Kaczmarska, I. Effect of light: Dark cycles and cell apical length on the sexual reproduction of the pennate diatom Pseudo-nitzschia multiseries (Bacillariophyceae) in culture. Phycologia 39, 59–66 (2000).

    Google Scholar 

  • Mouget, J.-L., Gastineau, R., Davidovich, O., Gaudin, P. & Davidovich, N. A. Light is a key factor in triggering sexual reproduction in the pennate diatom Haslea ostrearia. FEMS Microbiol. Ecol. 69, 194–201 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Montresor, M., Vitale, L., D’Alelio, D. & Ferrante, M. I. Sex in marine planktonic diatoms: Insights and challenges. Perspect. Phycol. 3, 61–75 (2016).

    Google Scholar 

  • Rost, B., Riebesell, U. & Sültemeyer, D. Carbon acquisition of marine phytoplankton: Effect of photoperiod length. Limnol. Oceanogr. 51, 12–20 (2006).

    ADS 
    CAS 

    Google Scholar 

  • Edwards, K. F. Community trait structure in phytoplankton: Seasonal dynamics from a method for sparse trait data. Ecology 97, 3441–3451 (2016).

    PubMed 

    Google Scholar 

  • Forrest, J. & Miller-Rushing, A. J. Toward a synthetic understanding of the role of phenology in ecology and evolution. Philos. Trans. R. Soc. B 365, 3101–3112 (2010).

    Google Scholar 

  • Margiotta, F. et al. Do plankton reflect the environmental quality status? The case of a post-industrial Mediterranean Bay. Mar. Environ. Res. 160, 104980 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Ferrera, I. et al. Assessment of microbial plankton diversity as an ecological indicator in the NW Mediterranean coast. Mar. Pollut. Bull. 160, 111691 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Cloern, J. E., Jassby, A. D., Thompson, J. K. & Hieb, K. A. A cold phase of the East Pacific triggers new phytoplankton blooms in San Francisco Bay. Proc. Natl. Acad. Sci. USA 104, 18561–18565 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Scotto di Carlo, B. et al. Uno studio integrato dell’ecosistema pelagico costiero del Golfo di Napoli. Nova Thalass 7, 99–128 (1985).

    Google Scholar 

  • Carrada, G. C., Fresi, E., Marino, D., Modigh, M. & D’Alcalà, M. R. Structural analysis of winter phytoplankton in the Gulf of Naples. J. Plankton Res. 3, 291–314 (1981).

    CAS 

    Google Scholar 

  • Marino, D., Modigh, M. & Zingone, A. General features of phytoplankton communities and primary production in the Gulf of Naples and adjacent waters. In Marine Phytoplankton and Productivity (Springer, 1984).

    Google Scholar 

  • Hansen, H. P. & Grasshoff, K. Automated chemical analysis. Methods Seawater Anal. 49, 347–395 (1983).

    Google Scholar 

  • Sabia, L. et al. Assessing the quality of biogeochemical coastal data: A step-wise procedure. Mediterr. Mar. Sci. 20, 56–73 (2019).

    Google Scholar 

  • Mann, H. B. Nonparametric tests against trend. Econometrica 13, 245–259 (1945).

    MathSciNet 
    MATH 

    Google Scholar 

  • Kendall, M. G. Kendall Rank Correlation Methods (Griffin, 1975).

    Google Scholar 

  • Jassby, A. D. & Cloern, J. E. wq: Exploring water quality monitoring data. R Package Version 04 5, (2015).

  • Lomb, N. R. Least-squares frequency analysis of unequally spaced data. Astrophys. Space Sci. 39, 447–462 (1976).

    ADS 

    Google Scholar 

  • Scargle, J. D. Studies in astronomical time series analysis. II-Statistical aspects of spectral analysis of unevenly spaced data. Astrophys. J. 263, 835–853 (1982).

    ADS 

    Google Scholar 

  • Linnell Nemec, A. F. & Nemec, J. M. A test of significance for periods derived using phase-dispersion-minimization techniques. Astron. J. 90, 2317–2320 (1985).

    ADS 

    Google Scholar 

  • Fuhrman, J. A., Cram, J. A. & Needham, D. M. Marine microbial community dynamics and their ecological interpretation. Nat. Rev. Microbiol. 13, 133–146 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Cram, J. A. et al. Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. ISME J. 9, 563–580 (2015).

    PubMed 

    Google Scholar 

  • Escoufier, Y. Le traitement des variables vectorielles. Biometrics 29, 751–760 (1973).

    MathSciNet 

    Google Scholar 

  • Thioulouse, J. et al. Multivariate Analysis of Ecological Data with ade4 (Springer, 2018).

    Google Scholar 

  • Fuhrman, J. A. et al. Annually reoccurring bacterial communities are predictable from ocean conditions. Proc. Natl. Acad. Sci. USA 103, 13104–13109 (2006).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • O’Brien, R. M. A caution regarding rules of thumb for variance inflation factors. Qual. Quant. 41, 673–690 (2007).

    Google Scholar 

  • Grömping, U. Relative importance for linear regression in R: the package relaimpo. J. Stat. Softw. 17, 1–27 (2006).

    Google Scholar 

  • Bi, J. A review of statistical methods for determination of relative importance of correlated predictors and identification of drivers of consumer liking. J. Sens. Stud. 27, 87–101 (2012).

    Google Scholar 


  • Source: Ecology - nature.com

    Using soap to remove micropollutants from water

    Study: Ice flow is more sensitive to stress than previously thought