Hoham, R. W. & Remias, D. Snow and glacial algae: A review. J. Phycol. 56, 264–282 (2020).
Google Scholar
Williamson, C. J. et al. Glacier algae: A dark past and a darker future. Front. Microbiol. 10, 524 (2019).
Google Scholar
Hodson, A. J., Mumford, P. N., Kohler, J. & Wynn, P. M. The High Arctic glacial ecosystem: New insights from nutrient budgets. Biogeochemistry 72, 233–256 (2005).
Google Scholar
Stibal, M., Tranter, M., Telling, J. & Benning, L. G. Speciation, phase association and potential bioavailability of phosphorus on a Svalbard glacier. Biogeochemistry 90, 1–13 (2008).
Google Scholar
Telling, J. et al. Microbial nitrogen cycling on the Greenland ice sheet. Biogeosciences 9, 2431–2442 (2012).
Google Scholar
Cook, J. M. et al. Glacier algae accelerate melt rates on the south-western Greenland ice sheet. Cryosphere 14, 309–330 (2020).
Google Scholar
Yallop, M. L. et al. Photophysiology and albedo-changing potential of the ice algal community on the surface of the Greenland ice sheet. ISME J. 6, 2302–2313 (2012).
Google Scholar
Stibal, M. et al. Algae drive enhanced darkening of bare ice on the Greenland ice sheet. Geophys. Res. Lett. 44, 11463–11471 (2017).
Google Scholar
Di Mauro, B. et al. Glacier algae foster ice-albedo feedback in the European Alps. Sci. Rep. 10, 1–9 (2020).
Google Scholar
Lutz, S. et al. The biogeography of red snow microbiomes and their role in melting arctic glaciers. Nat. Commun. 7, 1–9 (2016).
Google Scholar
Ganey, G. Q., Loso, M. G., Burgess, A. B. & Dial, R. J. The role of microbes in snowmelt and radiative forcing on an Alaskan icefield. Nat. Geosci. 10, 754–759 (2017).
Google Scholar
Khan, A. L., Dierssen, H. M., Scambos, T. A., Höfer, J. & Cordero, R. R. Spectral characterization, radiative forcing and pigment content of coastal Antarctic snow algae: Approaches to spectrally discriminate red and green communities and their impact on snowmelt. Cryosphere 15(1), 133–148 (2021).
Google Scholar
Huovinen, P., Ramírez, J. & Gómez, I. Remote sensing of albedo-reducing snow algae and impurities in the Maritime Antarctica. ISPRS J. Photogramm. Remote Sens. 146, 507–517 (2018).
Google Scholar
Stibal, M., Šabacká, M. & Žárský, J. Biological processes on glacier and ice sheet surfaces. Nat. Geosci. 5, 771–774 (2012).
Google Scholar
Williamson, C. J. et al. Algal photophysiology drives darkening and melt of the Greenland ice sheet. Proc. Natl. Acad. Sci. https://doi.org/10.1073/pnas.1918412117 (2020).
Google Scholar
Chevrollier, L.-A. et al. Light absorption and albedo reduction by pigmented microalgae on snow and ice. J. Glaciol. https://doi.org/10.1017/jog.2022.64 (2022).
Google Scholar
Procházková, L., Řezanka, T., Nedbalová, L. & Remias, D. Unicellular versus filamentous: The glacial alga ancylonema alaskana comb. et. stat. nov. and its ecophysiological relatedness to ancylonema nordenskioeldii (zygnematophyceae, streptophyta). Microorganisms 9(5), 1103 (2021).
Google Scholar
Remias, D. et al. Characterization of an UV- and VIS-absorbing, purpurogallin-derived secondary pigment new to algae and highly abundant in Mesotaenium berggrenii (Zygnematophyceae, Chlorophyta), an extremophyte living on glaciers. FEMS Microbiol. Ecol. 79, 638–648 (2012).
Google Scholar
Williamson, C. J. et al. Ice algal bloom development on the surface of the Greenland ice sheet. FEMS Microbiol. Ecol. 94, 1–10 (2018).
Remias, D., Lütz-Meindl, U. & Lütz, C. Photosynthesis, pigments and ultrastructure of the alpine snow alga Chlamydomonas nivalis. Eur. J. Phycol. 40, 259–268 (2005).
Google Scholar
Leya, T., Rahn, A., Lütz, C. & Remias, D. Response of arctic snow and permafrost algae to high light and nitrogen stress by changes in pigment composition and applied aspects for biotechnology. FEMS Microbiol. Ecol. 67, 432–443 (2009).
Google Scholar
Müller, T., Bleiß, W., Martin, C. D., Rogaschewski, S. & Fuhr, G. Snow algae from northwest Svalbard: Their identification, distribution, pigment and nutrient content. Polar Biol. 20, 14–32 (1998).
Remias, D., Karsten, U., Lütz, C. & Leya, T. Physiological and morphological processes in the Alpine snow alga Chloromonas nivalis (Chlorophyceae) during cyst formation. Protoplasma 243, 73–86 (2010).
Google Scholar
Bidigare, R. R. et al. Evidence for a photoprotective function for secondary carotenoids of snow algae taxonomy, life histories, ecology and geographical habitats and polar regions. J. Phycol. 434, 427–434 (1993).
Google Scholar
Remias, D. & Lütz, C. Characterisation of esterified secondary carotenoids and of their isomers in green algae: A HPLC approach. Arch. Hydrobiol. Suppl. Algol. Stud. 124, 85–94 (2007).
Google Scholar
Dial, R. J., Ganey, G. Q. & Skiles, S. M. What color should glacier algae be ? An ecological role for red carbon in the cryosphere. FEMS Microbiol. Ecol. 94(3), 1–9. https://doi.org/10.1093/femsec/fiy007 (2018).
Google Scholar
Uusikivi, J., Vähätalo, A. V., Granskog, M. A. & Sommaruga, R. Contribution of mycosporine-like amino acids and colored dissolved and particulate matter to sea ice optical properties and ultraviolet attenuation. Limnol. Oceanogr. 55, 703–713 (2010).
Google Scholar
Xie, H., Aubry, C., Zhang, Y. & Song, G. Chromophoric dissolved organic matter (CDOM) in first-year sea ice in the western Canadian Arctic. Mar. Chem. 165, 25–35 (2014).
Google Scholar
Holzinger, A. & Lütz, C. Algae and UV irradiation: Effects on ultrastructure and related metabolic functions. Micron 37, 190–207 (2006).
Google Scholar
Piiparinen, J. et al. The contribution of mycosporine-like amino acids, chromophoric dissolved organic matter and particles to the UV protection of sea-ice organisms in the Baltic Sea. Photochem. Photobiol. Sci. 14, 1025–1038 (2015).
Google Scholar
Cook, J. M. et al. Quantifying bioalbedo: A new physically based model and discussion of empirical methods for characterising biological influence on ice and snow albedo. Cryosphere 11, 2611–2632 (2017).
Google Scholar
Lutz, S., Anesio, A. M., Jorge Villar, S. E. & Benning, L. G. Variations of algal communities cause darkening of a Greenland glacier. FEMS Microbiol. Ecol. 89, 402–414 (2014).
Google Scholar
Hoham, R. W. & Ling, H. U. Snow algae: Tile effects of chemical and physical factors on their life cycles and populations. In Journey to Diverse Microbial Worlds (ed. Seckback, J.) 131–145 (Springer, Netherlands, 2000).
Procházková, L., Leya, T., Krížková, H. & Nedbalová, L. Sanguina nivaloides and Sanguina aurantia gen. Et spp. Nov. (Chlorophyta): The taxonomy, phylogeny, biogeography and ecology of two newly recognised algae causing red and orange snow. FEMS Microbiol. Ecol. 95, 1–21 (2019).
Hillebrand, H., Dürselen, C. D., Kirschtel, D., Pollingher, U. & Zohary, T. Biovolume calculation for pelagic and benthic microalgae. J. Phycol. 35, 403–424 (1999).
Montagnes, D. J. S., Berges, J. A., Harrison, P. J. & Taylor, F. J. R. Estimating carbon, nitrogen, protein and chlorophyll a from volume in marine phytoplankton. Limnol. Oceanogr. 39, 1044–1060 (1994).
Google Scholar
Schreiber, U., Gademann, R., Ralph, P. J. & Larkum, A. W. D. Assessment of photosynthetic performance of Prochloron in Lissoclinum patella in hospite by chlorophyll fluorescence measurements. Plant Cell Physiol. 38, 945–951 (1997).
Google Scholar
Jassby, A. D. & Platt, T. Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol. Oceanogr. 21, 540–547 (1976).
Google Scholar
Silsbe, G. M. & Malkin, S. Y. Package ‘phytotools’: Phytoplankton Production Tools. (2015).
Aigner, S., Remias, D., Karsten, U. & Holzinger, A. Unusual phenolic compounds contribute to ecophysiological performance in the purple-colored green alga Zygogonium ericetorum (Zygnematophyceae, Streptophyta) from a high-alpine habitat. J. Phycol. 49, 648–660 (2013).
Google Scholar
Holzinger, A. et al. Arctic, Antarctic, and temperate green algae Zygnema spp. under UV-B stress: Vegetative cells perform better than pre-akinetes. Protoplasma 255, 1239–1252 (2018).
Google Scholar
Bidigare, R. R., Ondrusek, M. E., Morrow, J. H. & Kiefer, D. A. In-vivo absorption properties of algal pigments. Ocean Opt. X 1302, 290 (1990).
Google Scholar
Clementson, L. A. & Wojtasiewicz, B. Dataset on the absorption characteristics of extracted phytoplankton pigments. Data Br. 24, 103875 (2019).
Bidigare, R. R., Ondrusek, M. E., Morrow, J. H. & Kiefer, D. A. In vivo absorption properties of algal pigments. Ocean Opt. X 1302, 290–302 (1990).
Google Scholar
Bricaud, A. & Stramski, D. Spectral absorption coefficients of living phytoplankton and nonalgal biogenous matter: A comparison between the Peru upwelling areaand the Sargasso Sea. Limnol. Oceanogr. 35, 562–582 (1990).
Google Scholar
Duval, B., Shetty, K. & Thomas, W. H. Phenolic compounds and antioxidant properties in the snow alga Chlamydomonas nivalis after exposure to UV light. J. Appl. Phycol. 11, 559–566 (2000).
Onuma, Y. et al. Observations and modelling of algal growth on a snowpack in north-western Greenland. Cryosphere 12, 2147–2158 (2018).
Google Scholar
Christner, B. C. et al. Microbial processes in the weathering crust aquifer of a temperate glacier. Cryosphere 12, 3653–3669 (2018).
Google Scholar
Cook, J. M., Hodson, A. J. & Irvine-Fynn, T. D. L. Supraglacial weathering crust dynamics inferred from cryoconite hole hydrology. Hydrol. Process. 30, 433–446 (2016).
Google Scholar
Tedstone, A. J. et al. Algal growth and weathering crust state drive variability in western Greenland ice sheet ice albedo. Cryosphere 14, 521–538 (2020).
Google Scholar
Smith, L. C. et al. Efficient meltwater drainage through supraglacial streams and rivers on the southwest Greenland ice sheet. Proc. Natl. Acad. Sci. U. S. A. 112, 1001–1006 (2015).
Google Scholar
Irvine-Fynn, T. D. L. et al. Storage and export of microbial biomass across the western Greenland ice sheet. Nat. Commun. 12, 1–11 (2021).
Cameron, K. A. et al. Meltwater export of prokaryotic cells from the Greenland ice sheet. Environ. Microbiol. 19, 524–534 (2017).
Google Scholar
Stibal, M. et al. Environmental controls on microbial abundance and activity on the Greenland ice sheet: A multivariate analysis approach. Microb. Ecol. 63, 74–84 (2012).
Google Scholar
Mernild, S. H., Liston, G. E., Hasholt, B. & Knudsen, N. T. Snow distribution and melt modeling for Mittivakkat Glacier, Ammassalik Island, southeast Greenland. J. Hydrometeorol. 7, 808–824 (2006).
Google Scholar
Stibal, M., Elster, J., Šabacká, M. & Kaštovská, K. Seasonal and diel changes in photosynthetic activity of the snow alga Chlamydomonas nivalis (Chlorophyceae) from Svalbard determined by pulse amplitude modulation fluorometry. FEMS Microbiol. Ecol. 59, 265–273 (2007).
Google Scholar
Remias, D., Holzinger, A., Aigner, S. & Lu, C. Ecophysiology and ultrastructure of Ancylonema nordenskioldii (Zygnematales, Streptophyta), causing brown ice on glaciers in Svalbard (high arctic). 899–908 (2012). doi:https://doi.org/10.1007/s00300-011-1135-6
Remias, D., Holzinger, A. & Lütz, C. Physiology, ultrastructure and habitat of the ice Alga Mesotaenium berggrenii (Zygnemaphyceae, Chlorophyta) from Glaciers in the European Alps. Phycologia 48, 302–312 (2009).
Nakashima, T. et al. Spatial and temporal variations in pigment and species compositions of snow algae on Mt. Tateyama in Toyama prefecture, Japan.. Front. Plant Sci. 12, 1–16 (2021).
Remias, D., Albert, A. & Lütz, C. Effects of realistically simulated, elevated UV irradiation on photosynthesis and pigment composition of the alpine snow alga Chlamydomonas nivalis and the arctic soil alga Tetracystis sp. (Chlorophyceae). Photosynthetica 48, 269–277 (2010).
Google Scholar
Procházková, L., Remias, D., Holzinger, A., Řezanka, T. & Nedbalová, L. Ecophysiological and ultrastructural characterisation of the circumpolar orange snow alga Sanguina aurantia compared to the cosmopolitan red snow alga Sanguina nivaloides (Chlorophyta). Polar Biol. 44, 105–117 (2021).
Google Scholar
Niyogi, K. K. Photoprotection revisited: Genetic and molecular approaches. Annu. Rev. Plant Biol. 50, 333–359 (1999).
Google Scholar
Sakshaug, E. & Holm-hansen, O. Photoadaptation in Antarctic phytopfankton: Variations in growth rate, chemical composition and P versus I curves. J. Plankton Res. 8, 459–473 (1986).
Malerba, M. E., Palacios, M. M., Palacios Delgado, Y. M., Beardall, J. & Marshall, D. J. Cell size, photosynthesis and the package effect: An artificial selection approach. New Phytol. 219, 449–461 (2018).
Google Scholar
Wagner, B., Ochs, D. & Bieler, K. Derivatives as antimicrobial agents. Engineering 8, 240–244 (2011).
Perini, L. et al. Darkening of the Greenland ice sheet: Fungal abundance and diversity are associated with algal bloom. Front. Microbiol. 10, 557 (2019).
Google Scholar
Perini, L. et al. Interactions of fungi and algae from the Greenland ice sheet. Microb. Ecol. https://doi.org/10.1007/s00248-022-02033-5 (2022).
Google Scholar
Taskjelle, T. et al. Spectral albedo and transmittance of thin young Arctic sea ice. J. Geophys. Res. Ocean. 121, 540–553 (2015).
Google Scholar
Lutz, S., Anesio, A. M., Edwards, A. & Benning, L. G. Linking microbial diversity and functionality of arctic glacial surface habitats. Environ. Microbiol. 19, 551–565 (2017).
Google Scholar
Smith, H., Dieser, M., McKnight, D., SanClements, M. & Foreman, C. Relationship between dissolved organic matter quality and microbial community composition across polar glacial environments. FEMS Microbiol. Ecol. 94(7), fiy090 (2018).
Google Scholar
Kirk, J. T. O. A theoretical analysis of the contributino of algal cells to the attenuation of light within natural waters. New Phytol. 77, 341–358 (1976).
Morel, A. & Bricaud, A. Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton. Deep Sea Res. Part A. Oceanogr. Res. Pap. 28, 1375–1393 (1981).
Google Scholar
Stuart, V., Sathyendranath, S., Platt, T., Maass, H. & Irwin, B. D. Pigments and species composition of natural phytoplankton populations: Effect on the absorption spectra. J. Plankton Res. 20, 187–217 (1998).
Google Scholar
Kirk, J. Light and Photosynthesis in Aquatic Environment (University Press, 1983).
Nelson, N. B., Prezelin, B. B. & Bidigare, R. R. Phytoplankton light absorption and the package effect in California coastal waters. Mar. Ecol. Prog. Ser. 94, 217–227 (1993).
Google Scholar
Holzinger, A., Allen, M. C. & Deheyn, D. D. Hyperspectral imaging of snow algae and green algae from aeroterrestrial habitats. J. Photochem. Photobiol. B Biol. https://doi.org/10.1016/j.jphotobiol.2016.07.001 (2016).
Google Scholar
Anesio, A. M. et al. Monitoring glacial algae and impurities on the Greenland Ice Sheet. Aarhus Univ. DCE – Danish Cent. Environ. Energy, Sci. Rep. No. 489 26 (2022).
QGIS.org, %Y. QGIS Geographic Information System. QGIS Association. http://www.qgis.org.
Source: Ecology - nature.com