Díaz, S. et al. Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. https://doi.org/10.5281/zenodo.3553579 (2019).
Fei, S. et al. Divergence of species responses to climate change. Sci. Adv. 3, e1603055 (2017).
Google Scholar
Jetz, W. et al. Monitoring plant functional diversity from space. Nat. Plants 2, 16024 (2016).
Google Scholar
HyspIRI Mission Concept Team. HyspIRI Final Report. https://hyspiri.jpl.nasa.gov/downloads/reports_whitepapers/HyspIRI_FINAL_Report_1October2018_20181005a.pdf. Jet Propulsion Laboratories, California Institute of Technology, Pasadena, CA, USA (2018).
Turner, W. Sensing biodiversity. Science 346, 301–302 (2014).
Google Scholar
Ustin, S. L. & Middleton, E. M. Current and near-term advances in Earth observation for ecological applications. Ecol. Process. 10, 1 (2021).
Google Scholar
Cawse-Nicholson, K. et al. NASA’s surface biology and geology designated observable: a perspective on surface imaging algorithms. Remote Sens. Environ. 257, 112349 (2021).
Google Scholar
Stavros, E. N. et al. ISS Observations Offer Insights Into Plant Function. Nature Ecology and Evolution 1, https://doi.org/10.1038/s41559-017-0194 (2017).
Rast, M., Nieke, J., Adams, J., Isola, C. & Gascon, F. Copernicus Hyperspectral Imaging Mission for the Environment (Chime). IEEE International Geoscience and Remote Sensing Symposium IGARSS, 108–111, https://doi.org/10.1109/IGARSS47720.2021.9553319 (2021).
Cogliati, S. et al. The PRISMA imaging spectroscopy mission: overview and first performance analysis. Remote Sens. Environ. 262, 112499 (2021).
Google Scholar
Asner, G. P. et al. Airborne laser-guided imaging spectroscopy to map forest trait diversity and guide conservation. Science 355, 385–389 (2017).
Google Scholar
Meireles, J. E. et al. Leaf reflectance spectra capture the evolutionary history of seed plants. N. Phytologist 228, 485–493 (2020).
Google Scholar
Schweiger, A. K. et al. Plant spectral diversity integrates functional and phylogenetic components of biodiversity and predicts ecosystem function. Nat. Ecol. Evolution https://doi.org/10.1038/s41559-018-0551-1 (2018).
Google Scholar
Cavender-Bares, J. et al. Harnessing plant spectra to integrate the biodiversity sciences across biological and spatial scales. Am. J. Bot. 104, 966–969 (2017).
Google Scholar
Laliberté, E., Schweiger, A. K. & Legendre, P. Partitioning plant spectral diversity into alpha and beta components. Ecol. Lett. 23, 370–380 (2020).
Google Scholar
Rocchini, D. et al. Remotely sensed spectral heterogeneity as a proxy of species diversity: recent advances and open challenges. Ecol. Inform. 5, 318–329 (2010).
Google Scholar
Gholizadeh, H. et al. Detecting prairie biodiversity with airborne remote sensing. Remote Sens. Environ. 221, 38–49 (2019).
Google Scholar
Wang, R. et al. Influence of species richness, evenness, and composition on optical diversity: a simulation study. Remote Sens. Environ. 211, 218–228 (2018).
Google Scholar
Féret, J.-B. & Asner, G. P. Mapping tropical forest canopy diversity using high‐fidelity imaging spectroscopy. Ecol. Appl. 24, 1289–1296 (2014).
Google Scholar
Draper, F. C. et al. Imaging spectroscopy predicts variable distance decay across contrasting Amazonian tree communities. J. Ecol. 107, 696–710 (2019).
Google Scholar
Wang, R., Gamon, J. A., Cavender‐Bares, J., Townsend, P. A. & Zygielbaum, A. I. The spatial sensitivity of the spectral diversity–biodiversity relationship: an experimental test in a prairie grassland. Ecol. Appl. 28, 541–556 (2018).
Google Scholar
Rossi, C. et al. Spatial resolution, spectral metrics and biomass are key aspects in estimating plant species richness from spectral diversity in species-rich grasslands. Remote Sens. Ecol. Conserv. https://doi.org/10.1002/rse2.244 (2021).
Google Scholar
Finderup Nielsen, T., Sand-Jensen, K., Dornelas, M. & Bruun, H. H. More is less: net gain in species richness, but biotic homogenization over 140 years. Ecol. Lett. 22, 1650–1657 (2019).
Google Scholar
McKinney, M. L. & Lockwood, J. L. Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol. Evolution 14, 450–453 (1999).
Google Scholar
Anderson, M. J. et al. Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecol. Lett. 14, 19–28 (2011).
Google Scholar
Rocchini, D. et al. Measuring β‐diversity by remote sensing: a challenge for biodiversity monitoring. Methods Ecol. Evolution 9, 1787–1798 (2018).
Google Scholar
Chadwick, K. D. & Asner, G. P. Landscape evolution and nutrient rejuvenation reflected in Amazon forest canopy chemistry. Ecol. Lett. 21, 978–988 (2018).
Google Scholar
Felsenstein, J. Phylogenies and the comparative method. American Naturalist, 1-15, https://doi.org/10.1086/284325 (1985).
Wang, R. & Gamon, J. A. Remote sensing of terrestrial plant biodiversity. Remote Sens. Environ. 231, 111218 (2019).
Google Scholar
Schimel, D. S., Asner, G. P. & Moorcroft, P. Observing changing ecological diversity in the Anthropocene. Front. Ecol. Environ. 11, 129–137 (2013).
Google Scholar
NEON (National Ecological Observatory Network). Spectrometer orthorectified surface directional reflectance—mosaic, RELEASE-2021 (DP3.30006.001). https://doi.org/10.48443/qeae-3×15. Dataset accessed from https://data.neonscience.org on March (2021).
Richter, R. & Schläpfer, D. Geo-atmospheric processing of airborne imaging spectrometry data. Part 2: Atmospheric/topographic correction. Int. J. Remote Sens. 23, 2631–2649 (2002).
Google Scholar
Asner, G. P. & Martin, R. E. Airborne spectranomics: mapping canopy chemical and taxonomic diversity in tropical forests. Front. Ecol. Environ. 7, 269–276 (2009).
Google Scholar
Rüfenacht, D., Fredembach, C. & Süsstrunk, S. Automatic and accurate shadow detection using near-infrared information. IEEE Trans. pattern Anal. Mach. Intell. 36, 1672–1678 (2013).
Google Scholar
NEON (National Ecological Observatory Network). High-resolution orthorectified camera imagery mosaic, RELEASE-2021 (DP3.30010.001). https://doi.org/10.48443/4e85-cr14. Dataset accessed from https://data.neonscience.org on March 3 (2021).
Feilhauer, H., Asner, G. P., Martin, R. E. & Schmidtlein, S. Brightness-normalized partial least squares regression for hyperspectral data. J. Quant. Spectrosc. Radiat. Transf. 111, 1947–1957 (2010).
Google Scholar
NEON (National Ecological Observatory Network). Plant presence and percent cover, RELEASE-2021 (DP1.10058.001). https://doi.org/10.48443/abge-r811. Dataset accessed from https://data.neonscience.org on March 3 (2021).
NEON (National Ecological Observatory Network). Woody plant vegetation structure, RELEASE-2021 (DP1.10098.001). https://doi.org/10.48443/e3qn-xw47. Dataset accessed from https://data.neonscience.org on March 3 (2021).
Schweiger, A. K. NEON_crown_area (1.0.0). https://doi.org/10.5281/zenodo.6383923 (2022).
R Foundation for Statistical Computing. R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2019).
Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-7 (2020).
Jin, Y. & Qian, H. V. PhyloMaker: an R package that can generate very large phylogenies for vascular plants. Ecography 42, 1353–1359 (2019).
Google Scholar
Smith, S. A. & Brown, J. W. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 105, 302–314 (2018).
Google Scholar
Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).
Google Scholar
NEON (National Ecological Observatory Network). Plant foliar traits, RELEASE-2021 (DP1.10026.001). https://doi.org/10.48443/za0d-wn97. Dataset accessed from https://data.neonscience.org on March 3 (2021).
Legendre, P. & De Cáceres, M. Beta diversity as the variance of community data: dissimilarity coefficients and partitioning. Ecol. Lett. 16, 951–963 (2013).
Google Scholar
Dray, S. & Dufour, A.-B. The ade4 package: implementing the duality diagram for ecologists. J. Stat. Softw. 22, 1–20 (2007).
Google Scholar
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & Team, R. C. nlme: Linear and nonlinear mixed effects models. R package version 3.1-152 (2021).
NEON (National Ecological Observatory Network). LAI—spectrometer—mosaic, RELEASE-2021 (DP3.30012.001). https://doi.org/10.48443/h2rb-pj34. Dataset accessed from https://data.neonscience.org on March 3 (2021).
Source: Ecology - nature.com