in

Plant-frugivore network simplification under habitat fragmentation leaves a small core of interacting generalists

  • Bascompte, J. & Jordano, P. Mutualistic Networks (Princeton Univ. Press, Princeton, NJ, 2013).

  • Cordeiro, N. J. & Howe, H. F. Forest fragmentation severs mutualism between seed dispersers and an endemic African tree. Proc. Natl Acad. Sci. USA 100, 14052–14056 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wandrag, E. M., Dunham, A. E., Duncan, R. P. & Rogers, H. S. Seed dispersal increases local species richness and reduces spatial turnover of tropical tree seedlings. Proc. Natl Acad. Sci. USA 114, 10689–10694 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34, 487–515 (2003).

    Google Scholar 

  • Fahrig, L. Ecological responses to habitat fragmentation per se. Annu. Rev. Ecol. Evol. Syst. 48, 1–23 (2017).

    Google Scholar 

  • Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1, e1500052 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Fricke, E. C. & Svenning, J. C. Accelerating homogenization of the global plant-frugivore meta-network. Nature 585, 74–78 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Fontúrbel, F. E. et al. Meta-analysis of anthropogenic habitat disturbance effects on animal-mediated seed dispersal. Glob. Change Biol. 21, 3951–3960 (2015).

    Google Scholar 

  • Poisot, T. et al. Global knowledge gaps in species interaction networks data. J. Biogeogr. 48, 1552–1563 (2021).

    Google Scholar 

  • Hortal, J. et al. Seven shortfalls that beset large-scale knowledge of biodiversity. Annu. Rev. Ecol. Evol. Syst. 46, 523–549 (2015).

    Google Scholar 

  • Magrach, A., Laurance, W. F., Larrinaga, A. R. & Santamaria, L. Meta-analysis of the effects of forest fragmentation on interspecific interactions. Conserv. Biol. 28, 1342–1348 (2014).

    PubMed 

    Google Scholar 

  • Pocock, M. J. O., Evans, D. M. & Memmott, J. The robustness and restoration of a network of ecological networks. Science 335, 973–977 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Tylianakis, J. M., Didham, R. K., Bascompte, J. & Wardle, D. A. Global change and species interactions in terrestrial ecosystems. Ecol. Lett. 11, 1351–1363 (2008).

    PubMed 

    Google Scholar 

  • de Assis Bomfim, J., Guimarães, P. R. Jr., Peres, C. A., Carvalho, G. & Cazetta, E. Local extinctions of obligate frugivores and patch size reduction disrupt the structure of seed dispersal networks. Ecography 41, 1899–1909 (2018).

    Google Scholar 

  • Emer, C. et al. Seed dispersal networks in tropical forest fragments: Area effects, remnant species, and interaction diversity. Biotropica 52, 81–89 (2020).

    Google Scholar 

  • Evans, D. M., Pocock, M. J. O. & Memmott, J. The robustness of a network of ecological networks to habitat loss. Ecol. Lett. 16, 844–852 (2013).

    PubMed 

    Google Scholar 

  • Grass, I., Jauker, B., Steffan-Dewenter, I., Tscharntke, T. & Jauker, F. Past and potential future effects of habitat fragmentation on structure and stability of plant-pollinator and host-parasitoid networks. Nat. Ecol. Evol. 2, 1408–1417 (2018).

    PubMed 

    Google Scholar 

  • Neff, F. M. et al. Changes in plant-herbivore network structure and robustness along land-use intensity gradients in grasslands and forests. Sci. Adv. 7, eabf3985 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Dunne, J. A., Williams, R. J. & Martinez, N. D. Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecol. Lett. 5, 558–567 (2002).

    Google Scholar 

  • James, A., Pitchford, J. W. & Plank, M. J. Disentangling nestedness from models of ecological complexity. Nature 487, 227–230 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Jordano, P. Patterns of mutualistic interactions in pollination and seed dispersal: connectance, dependence asymmetries, and coevolution. Am. Nat. 129, 657–677 (1987).

    Google Scholar 

  • Vieira, M. C. & Almeida-Neto, M. A simple stochastic model for complex coextinctions in mutualistic networks: robustness decreases with connectance. Ecol. Lett. 18, 144–152 (2015).

    PubMed 

    Google Scholar 

  • Olesen, J. M., Bascompte, J., Dupont, Y. L. & Jordano, P. The modularity of pollination networks. Proc. Natl Acad. Sci. USA 104, 19891–19896 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gilarranz, L. J., Rayfield, B., Liñán-Cembrano, G., Bascompte, J. & Gonzalez, A. Effects of network modularity on the spread of perturbation impact in experimental metapopulations. Science 357, 199–201 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Liu, H. et al. Geographic variation in the robustness of pollination networks is mediated by modularity. Glob. Ecol. Biogeogr. 30, 1447–1460 (2021).

    Google Scholar 

  • Bascompte, J., Jordano, P., Melián, C. J. & Olesen, J. M. The nested assembly of plant-animal mutualistic networks. Proc. Natl Acad. Sci. USA 100, 9383–9387 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bastolla, U. et al. The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature 458, 1018–1020 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Memmott, J., Waser, N. M. & Price, M. V. Tolerance of pollination networks to species extinctions. Proc. R. Soc. B. 271, 2605–2611 (2004).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Delmas, E. et al. Analysing ecological networks of species interactions. Biol. Rev. 9, 16–36 (2019).

    Google Scholar 

  • Fortuna, M. A. et al. Nestedness versus modularity in ecological networks: two sides of the same coin? J. Anim. Ecol. 79, 811–817 (2010).

    PubMed 

    Google Scholar 

  • Song, C., Rohr, R. P. & Saavedra, S. Why are some plant-pollinator networks more nested than others? J. Anim. Ecol. 86, 1417–1424 (2017).

    PubMed 

    Google Scholar 

  • Schleuning, M., Böhning-Gaese, K., Dehling, D. M. & Burns, K. C. At a loss for birds: insularity increases asymmetry in seed-dispersal networks. Glob. Ecol. Biogeogr. 23, 385–394 (2014).

    Google Scholar 

  • Aizen, M. A., Sabatino, M. & Tylianakis, J. M. Specialization and rarity predict nonrandom loss of interactions from mutualist networks. Science 335, 1486–1489 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Fortuna, M. A. & Bascompte, J. Habitat loss and the structure of plant-animal mutualistic networks. Ecol. Lett. 9, 278–283 (2006).

    Google Scholar 

  • Spiesman, B. J. & Inouye, B. D. Habitat loss alters the architecture of plant-pollinator interaction networks. Ecology 94, 2688–2696 (2013).

    PubMed 

    Google Scholar 

  • Traveset, A. et al. Bird-flower visitation networks in the Galápagos unveil a widespread interaction release. Nat. Commun. 6, 6376 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Thébault, E. & Fontaine, C. Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329, 853–856 (2010).

    PubMed 

    Google Scholar 

  • Monteiro, E. C. S., Pizo, M. A., Vancine, M. H. & Ribeiro, M. C. Forest cover and connectivity have pervasive effects on the maintenance of evolutionary distinct interactions in seed dispersal networks. Oikos 2022, e08240 (2022).

    Google Scholar 

  • Whittaker, R. J., Fernández-Palacios, J. M., Matthews, T. J., Borregaard, M. K. & Triantis, K. A. Island biogeography: taking the long view of nature’s laboratories. Science 357, eaam8326 (2017).

    PubMed 

    Google Scholar 

  • Vizentin-Bugoni, J. et al. Structure, spatial dynamics, and stability of novel seed dispersal mutualistic networks in Hawai’i. Science 364, 78–82 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Diamond, J. Dammed experiments! Science 294, 1847–1848 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Jones, I. L., Bunnefeld, N., Jump, A. S., Peres, C. A. & Dent, D. H. Extinction debt on reservoir land-bridge islands. Biol. Conserv. 199, 75–83 (2016).

    Google Scholar 

  • Wu, J., Huang, J., Han, X., Xie, Z. & Gao, X. Three-Gorges dam–experiment in habitat Fragmentation? Science 300, 1239–1240 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • Wilson, M. C. et al. Habitat fragmentation and biodiversity conservation: key findings and future challenges. Landsc. Ecol. 31, 219–227 (2016).

    Google Scholar 

  • Trøjelsgaard, K. et al. Island biogeography of mutualistic interaction networks. J. Biogeogr. 40, 2020–2031 (2013).

    Google Scholar 

  • Emer, C., Venticinque, E. M. & Fonseca, C. R. Effects of dam-induced landscape fragmentation on amazonian ant-plant mutualistic networks. Conserv. Biol. 27, 763–773 (2013).

    PubMed 

    Google Scholar 

  • Zhu, C. et al. Arboreal camera trapping: a reliable tool to monitor plant-frugivore interactions in the trees on large scales. Remote Sens. Ecol. Conserv. 8, 92–104 (2022).

    Google Scholar 

  • Zhu, C., Li, W., Wang, D., Ding, P. & Si, X. Plant-frugivore interactions revealed by arboreal camera trapping. Front. Ecol. Environ. 19, 149–151 (2021).

    Google Scholar 

  • Galiana, N. et al. The spatial scaling of species interaction networks. Nat. Ecol. Evol. 2, 782–790 (2018).

    PubMed 

    Google Scholar 

  • Hanski, I., Zurita, G. A., Bellocq, M. I. & Rybicki, J. Species-fragmented area relationship. Proc. Natl Acad. Sci. USA 110, 12715–12720 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sugiura, S. Species interactions-area relationships: biological invasions and network structure in relation to island area. Proc. R. Soc. B. 277, 1807–1815 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Galiana, N. et al. Ecological network complexity scales with area. Nat. Ecol. Evol. 6, 307–314 (2022).

    PubMed 

    Google Scholar 

  • Santos, M., Cagnolo, L., Roslin, T., Marrero, H. J. & Vázquez, D. P. Landscape connectivity explains interaction network patterns at multiple scales. Ecology 100, e02883 (2019).

    PubMed 

    Google Scholar 

  • Si, X., Pimm, S. L., Russell, G. J. & Ding, P. Turnover of breeding bird communities on islands in an inundated lake. J. Biogeogr. 41, 2283–2292 (2014).

    Google Scholar 

  • Si, X. et al. Functional and phylogenetic structure of island bird communities. J. Anim. Ecol. 86, 532–542 (2017).

    PubMed 

    Google Scholar 

  • Rosenfeld, J. S. Functional redundancy in ecology and conservation. Oikos 98, 156–162 (2002).

    Google Scholar 

  • Sebastián-González, E. Drivers of species’ role in avian seed-dispersal mutualistic networks. J. Anim. Ecol. 86, 878–887 (2017).

    PubMed 

    Google Scholar 

  • Donoso, I. et al. Downsizing of animal communities triggers stronger functional than structural decay in seed-dispersal networks. Nat. Commun. 11, 1582 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kaiser-Bunbury, C. N., Muff, S., Memmott, J., Müller, C. B. & Caflisch, A. The robustness of pollination networks to the loss of species and interactions: a quantitative approach incorporating pollinator behaviour. Ecol. Lett. 13, 442–452 (2010).

    PubMed 

    Google Scholar 

  • Dalsgaard, B. et al. Opposed latitudinal patterns of network-derived and dietary specialization in avian plant-frugivore interaction systems. Ecography 40, 1395–1401 (2017).

    Google Scholar 

  • Borrvall, C., Ebenman, B. & Jonsson, T. Biodiversity lessens the risk of cascading extinction in model food webs. Ecol. Lett. 3, 131–136 (2000).

    Google Scholar 

  • Liao, J. et al. Robustness of metacommunities with omnivory to habitat destruction: disentangling patch fragmentation from patch loss. Ecology 98, 1631–1639 (2017).

    PubMed 

    Google Scholar 

  • Rumeu, B. et al. Predicting the consequences of disperser extinction: richness matters the most when abundance is low. Funct. Ecol. 31, 1910–1920 (2017).

    Google Scholar 

  • Wong, B. B. M. & Candolin, U. Behavioral responses to changing environments. Behav. Ecol. 26, 665–673 (2015).

    Google Scholar 

  • Betts, M. G. et al. Extinction filters mediate the global effects of habitat fragmentation on animals. Science 366, 1236–1239 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Menke, S., Böhning-Gaese, K. & Schleuning, M. Plant-frugivore networks are less specialized and more robust at forest–farmland edges than in the interior of a tropical forest. Oikos 121, 1553–1566 (2012).

    Google Scholar 

  • Redhead, J. W. et al. Potential landscape-scale pollinator networks across Great Britain: structure, stability and influence of agricultural land cover. Ecol. Lett. 21, 1821–1832 (2018).

    PubMed 

    Google Scholar 

  • Si, X. et al. The importance of accounting for imperfect detection when estimating functional and phylogenetic community structure. Ecology 99, 2103–2112 (2018).

    PubMed 

    Google Scholar 

  • Schoereder, J. H. et al. Should we use proportional sampling for species-area studies? J. Biogeogr. 31, 1219–1226 (2004).

    Google Scholar 

  • Liu, J. et al. The distribution of plants and seed dispersers in response to habitat fragmentation in an artificial island archipelago. J. Biogeogr. 46, 1152–1162 (2019).

    Google Scholar 

  • Olson, E. R. et al. Arboreal camera trapping for the Critically Endangered greater bamboo lemur Prolemur simus. Oryx 46, 593–597 (2012).

    Google Scholar 

  • Li, H.-D. et al. The functional roles of species in metacommunities, as revealed by metanetwork analyses of bird-plant frugivory networks. Ecol. Lett. 23, 1252–1262 (2020).

    PubMed 

    Google Scholar 

  • Snow, B. & Snow, D. Birds and berries: a study of an ecological interaction (T & AD Poyser, Calton, 1988).

  • Si, X., Kays, R. & Ding, P. How long is enough to detect terrestrial animals? Estimating the minimum trapping effort on camera traps. PeerJ 2, e374 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Vázquez, D. P. et al. Species abundance and asymmetric interaction strength in ecological networks. Oikos 116, 1120–1127 (2007).

    Google Scholar 

  • Chao, A. & Jost, L. Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93, 2533–2547 (2012).

    PubMed 

    Google Scholar 

  • Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).

    Google Scholar 

  • Beckett, S. J. Improved community detection in weighted bipartite networks. R. Soc. Open. Sci. 3, 140536 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Almeida-Neto, M. & Ulrich, W. A straightforward computational approach for measuring nestedness using quantitative matrices. Environ. Modell. Softw. 26, 173–178 (2011).

    Google Scholar 

  • Scherber, C. et al. Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature 468, 553–556 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Schleuning, M. et al. Ecological networks are more sensitive to plant than to animal extinction under climate change. Nat. Commun. 7, 13965 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Humphreys, A. M., Govaerts, R., Ficinski, S. Z., Nic Lughadha, E. & Vorontsova, M. S. Global dataset shows geography and life form predict modern plant extinction and rediscovery. Nat. Ecol. Evol. 3, 1043–1047 (2019).

    PubMed 

    Google Scholar 

  • Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Rogers, H. S., Donoso, I., Traveset, A. & Fricke, E. C. Cascading impacts of seed disperser loss on plant communities and ecosystems. Annu. Rev. Ecol. Evol. Syst. 52, 641–666 (2021).

    Google Scholar 

  • Dormann, C. F., Gruber, B. & Fründ, J. Introducing the bipartite package: analysing ecological networks. R News 8, 8–11 (2008).

    Google Scholar 

  • Patefield, W. M. Algorithm AS 159: An efficient method of generating random R × C tables with given row and column totals. Appl. Stat. 30, 91–97 (1981).

    Google Scholar 

  • Lefcheck, J. S. piecewiseSEM: piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).

    Google Scholar 

  • Kabacoff, R. R in Action: Data Analysis and Graphics with R (Manning Publications Co, 2015).

  • R Core Team. R: A Language And Environment For Statistical Computing (R Foundation for Statistical Computing, 2021).


  • Source: Ecology - nature.com

    Advancing the energy transition amidst global crises

    MIT PhD students shed light on important water and food research