in

Plant neighborhood shapes diversity and reduces interspecific variation of the phyllosphere microbiome

  • 1.

    Lindow SE, Brandl MT. Microbiology of the phyllosphere. Appl Environ Microbiol. 2003;69:1875LP–1883.

    Google Scholar 

  • 2.

    Morella NM, Zhang X, Koskella B. Tomato seed-associated bacteria confer protection of seedlings against foliar disease caused by Pseudomonas syringae. Phytobiomes J. 2019;3:177–90.

    Google Scholar 

  • 3.

    Innerebner G, Knief C, Vorholt JA. Protection of Arabidopsis thaliana against leaf-pathogenic Pseudomonas syringae by Sphingomonas strains in a controlled model system. Appl Environ Microbiol. 2011;77:3202–10.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 4.

    Fu S-F, Sun P-F, Lu H-Y, Wei J-Y, Xiao H-S, Fang W-T, et al. Plant growth-promoting traits of yeasts isolated from the phyllosphere and rhizosphere of Drosera spatulata Lab. Fungal Biol. 2016;120:433–48.

    CAS 
    PubMed 

    Google Scholar 

  • 5.

    Laforest-Lapointe I, Paquette A, Messier C, Kembel SW. Leaf bacterial diversity mediates plant diversity and ecosystem function relationships. Nature. 2017;546:145–7.

    CAS 
    PubMed 

    Google Scholar 

  • 6.

    Lindow SE, Leveau JHJ. Phyllosphere microbiology. Curr Opin Biotechnol. 2002;13:238–43.

    CAS 
    PubMed 

    Google Scholar 

  • 7.

    Fürnkranz M, Wanek W, Richter A, Abell G, Rasche F, Sessitsch A. Nitrogen fixation by phyllosphere bacteria associated with higher plants and their colonizing epiphytes of a tropical lowland rainforest of Costa Rica. ISME J. 2008;2:561–70.

    PubMed 

    Google Scholar 

  • 8.

    Ottesen AR, Gorham S, Reed E, Newell MJ, Ramachandran P, Canida T, et al. Using a control to better understand phyllosphere microbiota. PLoS ONE. 2016;11:e0163482.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 9.

    Jones JDG, Dangl JL. The plant immune system. Nature. 2006;444:323–9.

    CAS 
    PubMed 

    Google Scholar 

  • 10.

    Bodenhausen N, Bortfeld-miller M, Ackermann M, Vorholt JA. A synthetic community approach reveals plant genotypes affecting the phyllosphere microbiota. PLoS Biol. 2014; 10. https://doi.org/10.1371/journal.pgen.1004283.

  • 11.

    Horton MW, Bodenhausen N, Beilsmith K, Meng D, Muegge BD, Subramanian S, et al. Genome-wide association study of Arabidopsis thaliana leaf microbial community. Nat Commun. 2014;5:5320.

    PubMed 

    Google Scholar 

  • 12.

    Hacquard S, Spaepen S, Garrido-Oter R, Schulze-Lefert P. Interplay between innate immunity and the plant microbiota. Annu Rev Phytopathol. 2017;55:565–89.

    CAS 
    PubMed 

    Google Scholar 

  • 13.

    Zhalnina K, Louie KB, Hao Z, Mansoori N, Nunes U, Shi S et al. Dynamic root exudate chemistry and substrate preferences drive patterns in rhizosphere microbial community assembly. Nat Microbiol. 2018. https://doi.org/10.1038/s41564-018-0129-3.

  • 14.

    Humphrey PT, Whiteman NK. Insect herbivory reshapes a native leaf microbiome. Nat Ecol Evol. 2020;4:221–9.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    Yadav RKP, Karamanoli K, Vokou D. Bacterial colonization of the phyllosphere of Mediterranean perennial species as influenced by leaf structural and chemical features. Micro Ecol. 2005;50:185–96.

    CAS 

    Google Scholar 

  • 16.

    Morella NM, Weng FCH, Joubert PM, Metcalf CJE, Lindow S, Koskella B. Successive passaging of a plant-associated microbiome reveals robust habitat and host genotype-dependent selection. Proc Natl Acad Sci USA. 2020;117:1148–59.

    CAS 
    PubMed 

    Google Scholar 

  • 17.

    Wagner MR, Busby PE, Balint-Kurti P. Analysis of leaf microbiome composition of near-isogenic maize lines differing in broad-spectrum disease resistance. N Phytol. 2019;225:2152–65.

    Google Scholar 

  • 18.

    Wagner MR, Lundberg DS, Del Rio TG, Tringe SG, Dangl JL, Mitchell-Olds T. Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nat Commun. 2016;7:1–15.

    CAS 

    Google Scholar 

  • 19.

    Horner-Devine MC, Bohannan BJM. Phylogenetic clustering and overdispersion in bacterial communities. Ecology. 2006;87:S100–8.

    PubMed 

    Google Scholar 

  • 20.

    Kembel SW, O’Connor TK, Arnold HK, Hubbell SP, Wright SJ, Green JL. Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest. Proc Natl Acad Sci USA 2014; 1–6.

  • 21.

    Burns AR, Stephens WZ, Stagaman K, Wong S, Rawls JF, Guillemin K, et al. Contribution of neutral processes to the assembly of gut microbial communities in the zebrafish over host development. ISME J. 2016;10:655–64.

    CAS 
    PubMed 

    Google Scholar 

  • 22.

    Sloan WT, Woodcock S, Lunn M, Head IM, Curtis TP. Modeling taxa-abundance distributions in microbial communities using environmental sequence data. Micro Ecol. 2007;53:443–55.

    Google Scholar 

  • 23.

    Laforest-Lapointe I, Messier C, Kembel SW. Host species identity, site and time drive temperate tree phyllosphere bacterial community structure. Microbiome 2016; 1–10.

  • 24.

    Schlaeppi K, Dombrowski N, Oter RG, Ver Loren van Themaat E, Schulze-Lefert P. Quantitative divergence of the bacterial root microbiota in Arabidopsis thaliana relatives. Proc Natl Acad Sci USA. 2014;111:585LP–592.

    Google Scholar 

  • 25.

    Gallart M, Adair KL, Love J, Meason DF, Clinton PW, Xue J, et al. Host genotype and nitrogen form shape the root microbiome of Pinus radiata. Micro Ecol. 2018;75:419–33.

    CAS 

    Google Scholar 

  • 26.

    Hambäck PA, Inouye BD, Andersson P, Underwood N. Effects of plant neighborhoods on plant–herbivore interactions: resource dilution and associational effects. Ecology. 2014;95:1370–83.

    PubMed 

    Google Scholar 

  • 27.

    Underwood N, Inouye BD, Hambäck PA. A conceptual framework for associational effects: when do neighbors matter and how would we know? Q Rev Biol. 2014;89:1–19.

    PubMed 

    Google Scholar 

  • 28.

    Barbosa P, Hines J, Kaplan I, Martinson H, Szczepaniec A, Szendrei Z. Associational resistance and associational susceptibility: having right or wrong neighbors. Annu Rev Ecol Evol Syst. 2009;40:1–20.

    Google Scholar 

  • 29.

    Janzen DH. Herbivores and the number of tree species in tropical forests. Am Nat. 1970;104:501–28.

    Google Scholar 

  • 30.

    Connell JH. On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. in Den Boer PJ, Gradwell G, editors. Dynamics of populations. PUDOC, 1971, p. 298–312.

  • 31.

    Mangan SA, Schnitzer SA, Herre EA, Mack KML, Valencia MC, Sanchez EI, et al. Negative plant–soil feedback predicts tree-species relative abundance in a tropical forest. Nature. 2010;466:752–5.

    CAS 
    PubMed 

    Google Scholar 

  • 32.

    Miller EC, Perron GG, Collins CD. Plant‐driven changes in soil microbial communities influence seed germination through negative feedbacks. Ecol Evol. 2019;0:1–14.

    Google Scholar 

  • 33.

    Antonovics J, Ellstrand NC. Experimental studies of the evolutionary significance of sexual reproduction. I. A test of the frequency-dependent selection hypothesis. Evolution. 1984;38:103–15.

    PubMed 

    Google Scholar 

  • 34.

    Ellstrand NC, Antonovics J. Experimental studies of the evolutionary significance of sexual reproduction II. A test of the density-dependent selection hypothesis. Evolution. 1985;39:657–66.

    PubMed 

    Google Scholar 

  • 35.

    Naeem S, Tjossem SF, Byers D, Bristow C, Li S. Plant neighborhood diversity and production. Ecoscience. 1999;6:355–65.

    Google Scholar 

  • 36.

    Worrich A, Musat N. Associational effects in the microbial neighborhood. ISME J 2019; 2143–9.

  • 37.

    Copeland JK, Yuan L, Layeghifard M, Wang PW, Guttman DS. Seasonal community succession of the phyllosphere microbiome. Mol Plant Microbe Interact. 2015;28:274–85.

    CAS 
    PubMed 

    Google Scholar 

  • 38.

    Lajoie G, Kembel SW. Host neighborhood shapes bacterial community assembly and specialization on tree species across a latitudinal gradient. Ecol Monogr. 2021;0:1–18.

    Google Scholar 

  • 39.

    Lymperopoulou D, Adams R, Lindow SE, Löffler F. Contribution of vegetation to the microbial composition of nearby outdoor air. Appl Environ Microbiol. 2016;82:3822–33.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 40.

    Lindow SE, Andersen G. Influence of immigration on epiphytic bacterial populations on navel orange leaves. Appl Environ Microbiol. 1996;62:2978–87.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 41.

    Massoni J, Bortfeld-miller M, Widmer A, Vorholt JA. Capacity of soil bacteria to reach the phyllosphere and convergence of floral communities despite soil microbiota variation. Proc Natl Acad Sci USA 2021; 118. https://doi.org/10.1073/pnas.2100150118.

  • 42.

    Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF, et al. The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett. 2004;7:601–13.

    Google Scholar 

  • 43.

    Fodelianakis S, Lorz A, Valenzuela-cuevas A, Barozzi A, Booth JM, Daffonchio D. Dispersal homogenizes communities via immigration even at low rates in a simplified synthetic bacterial metacommunity. Nat Commun. 2019;10:1–12.

    Google Scholar 

  • 44.

    Burns AR, Miller E, Agarwal M, Rolig AS, Milligan-Myhre K, Seredick S et al. Interhost dispersal alters microbiome assembly and can overwhelm host innate immunity in an experimental zebrafish model. Proc Natl Acad Sci USA 2017;114. https://doi.org/10.1073/pnas.1702511114.

  • 45.

    Chelius MK, Triplett EW. The diversity of archaea and bacteria in association with the roots of Zea mays L. Micro Ecol. 2001;41:252–63.

    CAS 

    Google Scholar 

  • 46.

    Bodenhausen N, Horton MW, Bergelson J. Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana. PLoS ONE. 2013;8:e56329.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 47.

    Lundberg DS, Yourstone S, Mieczkowski P, Jones CD, Dangl JL. Practical innovations for high-throughput amplicon sequencing. Nat Methods. 2013;10:999–1002.

    CAS 
    PubMed 

    Google Scholar 

  • 48.

    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 49.

    R Core Team. R: A language and environment for statistical computing. 2020. http://cran.r-project.org.

  • 50.

    Morgan M, Anders S, Lawrence M, Aboyoun P, Pagès H, Gentleman R. ShortRead: a bioconductor package for input, quality assessment and exploration of high-throughput sequence data. Bioinformatics. 2009;25:2607–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 51.

    Pagès H, Aboyoun P, Gentleman R, DebRoy S. Biostrings: efficient manipulation of biological strings. 2020.

  • 52.

    McMurdie P, Holmes S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 2013; 8. https://doi.org/10.1371/journal.pone.0061217tle.

  • 53.

    Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 54.

    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–D596.

    CAS 
    PubMed 

    Google Scholar 

  • 55.

    Davis NM, Proctor DM, Holmes SP, Relman DA, Callahan BJ. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome. 2018;6:226.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 56.

    Morella NM, Gomez AL, Wang G, Leung MS, Koskella B. The impact of bacteriophages on phyllosphere bacterial abundance and composition. Mol Ecol. 2018;27:2025–38.

    PubMed 

    Google Scholar 

  • 57.

    Oksanen J, Blanchet FG, Roeland K, Legendre P, Minchin P, O’Hara RB et al. vegan: Community ecology package. 2015. http://cran.r-project.org.

  • 58.

    Anderson MJ. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 2001;26:32–46.

    Google Scholar 

  • 59.

    De Cáceres M, Legendre P. Associations between species and groups of sites: indices and statistical inference. Ecology. 2009;90:3566–74.

    PubMed 

    Google Scholar 

  • 60.

    Ersts PJ. Geographic Distance Matrix Generator. http://biodiversityinformatics.amnh.org/open_source/gdmg.

  • 61.

    Sprockett D. reltools: Microbiome Amplicon Analysis and Visualization. 2021.

  • 62.

    Sloan WT, Lunn M, Woodcock S, Head IM, Nee S, Curtis TP. Quantifying the roles of immigration and chance in shaping prokaryote community structure. Environ Microbiol. 2006;8:732–40.

    PubMed 

    Google Scholar 

  • 63.

    Wright ES. Using DECIPHER v2.0 to analyze big biological sequence data in R. R J. 2016;8:352–9.

    Google Scholar 

  • 64.

    Schliep KP. phangorn: phylogenetic analysis in R. Bioinformatics. 2011;27:592–3.

    CAS 
    PubMed 

    Google Scholar 

  • 65.

    Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics. 2010;26:1463–4.

    CAS 
    PubMed 

    Google Scholar 

  • 66.

    Koskella B. The phyllosphere. Curr Biol. 2020;30:R1143–R1146.

    CAS 
    PubMed 

    Google Scholar 

  • 67.

    Chaparro JM, Badri DV, Vivanco JM. Rhizosphere microbiome assemblage is affected by plant development. ISME J. 2014;8:790–803.

    CAS 
    PubMed 

    Google Scholar 

  • 68.

    İnceoğlu Ö, Al-Soud WA, Salles JF, Semenov AV, van Elsas JD. Comparative analysis of bacterial communities in a potato field as determined by pyrosequencing. PLoS ONE. 2011;6:e23321.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 69.

    Christian N, Herre EA, Mejia LC, Clay K. Exposure to the leaf litter microbiome of healthy adults protects seedlings from pathogen damage. Proc R Soc B Biol Sci. 2017;284:20170641.

    Google Scholar 

  • 70.

    Leigh EG, Davidar P, Dick CW, Terborgh J, Puyravaud J-P, ter Steege H, et al. Why do some tropical forests have so many species of trees? Biotropica. 2004;36:447–73.

    Google Scholar 

  • 71.

    Hyatt LA, Rosenberg MS, Howard TG, Bole G, Fang W, Anastasia J, et al. The distance dependence prediction of the Janzen-Connell hypothesis: a meta-analysis. Oikos. 2003;103:590–602.

    Google Scholar 

  • 72.

    Carson W, Anderson J, Leigh E, Schnitzer S. Challenges associated with testing and falsifying the Janzen_Connell hypothesis: a review and critique. In: Carson W, Schnitzer SA, editors. Tropical forest community ecology. Wiley Blackwell; 2008. p. 210–41.


  • Source: Ecology - nature.com

    Overcoming a bottleneck in carbon dioxide conversion

    Pricing carbon, valuing people