in

Pleistocene drivers of Northwest African hydroclimate and vegetation

  • de Menocal, P. B. Plio-Pleistocene African climate. Science 270, 53–59 (1995).

    ADS 
    Article 

    Google Scholar 

  • de Menocal, P. B. African climate change and faunal evolution during the Pliocene-Pleistocene. Earth Planet. Sci. Lett. 220, 3–24 (2004).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Donges, J. F. et al. Nonlinear detection of paleoclimate-variability transitions possibly related to human evolution. Proc. Natl Acad. Sci. U.S.A. 108, 20422–20427 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Maslin, M. A. et al. East african climate pulses and early human evolution. Quat. Sci. Rev. 101, 1–17 (2014).

    ADS 
    Article 

    Google Scholar 

  • Larrasoaña, J. C., Roberts, A. P. & Rohling, E. J. Dynamics of Green Sahara periods and their role in hominin evolution. PLoS One 8, 76514 (2013).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Castañeda, I. S. et al. Wet phases in the Sahara/Sahel region and human migration patterns in North Africa. Proc. Natl Acad. Sci. USA. 106, 20159–20163 (2009).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • United Nations World Food Programme. Scaling up for resilient individuals, communities and systems in the Sahel Operational Reference Note. (2018).

  • Barbier, B., Yacouba, H., Karambiri, H., Zoromé, M. & Somé, B. Human vulnerability to climate variability in the sahel: Farmers’ adaptation strategies in northern burkina faso. Environ. Manag. 43, 790–803 (2009).

    ADS 
    Article 

    Google Scholar 

  • Mohamed, A. Ben Climate change risks in Sahelian Africa. Reg. Environ. Chang. 11, 109–117 (2011).

    Article 

    Google Scholar 

  • Biasutti, M. Forced Sahel rainfall trends in the CMIP5 archive. J. Geophys. Res. Atmos. 118, 1613–1623 (2013).

    ADS 
    Article 

    Google Scholar 

  • Roudier, P., Sultan, B., Quirion, P. & Berg, A. The impact of future climate change on West African crop yields: what does the recent literature say? Glob. Environ. Chang 21, 1073–1083 (2011).

    Article 

    Google Scholar 

  • Keeling, R. F. & Keeling, C. D. Atmospheric monthly in situ CO2 data—Mauna Loa Observatory, Hawaii. In Scripps CO2 Program Data. UC San Diego Library Digital Collections. https://doi.org/10.6075/J08W3BHW (2017).

  • Brandt, M. et al. An unexpectedly large count of trees in the West African Sahara and Sahel. Nature 587, 78–82 (2020).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Tiedemann, R., Sarnthein, M. & Shackleton, N. J. Astronomic timescale for the Pliocene Atlantic δ18O and dust flux records of Ocean Drilling Program Site 659. Paleoceanography 9, 619–638 (1994).

    ADS 
    Article 

    Google Scholar 

  • de Menocal, P. B., Ruddiman, W. F. & Pokras, E. M. Influences of high‐ and low‐latitude processes on African terrestrial climate: Pleistocene eolian records from equatorial atlantic Ocean Drilling Program Site 663. Paleoceanography 8, 209–242 (1993).

    ADS 
    Article 

    Google Scholar 

  • Kuechler, R. R., Dupont, L. M. & Schefuß, E. Hybrid insolation forcing of Pliocene monsoon dynamics in West Africa. Clim. Past 14, 73–84 (2018).

    Article 

    Google Scholar 

  • Rose, C. et al. Changes in northeast African hydrology and vegetation associated with pliocene-pleistocene sapropel cycles. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150243 (2016).

    Article 
    CAS 

    Google Scholar 

  • Tierney, J. E., Pausata, F. S. R. & De Menocal, P. B. Rainfall regimes of the Green Sahara. Sci. Adv. 3, e1601503 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Tierney, J. E. & Russell, J. M. Abrupt climate change in southeast tropical Africa influenced by Indian monsoon variability and ITCZ migration. Geophys. Res. Lett. 34, 1–6 (2007).

    Article 
    CAS 

    Google Scholar 

  • Skonieczny, C. et al. Monsoon-driven Saharan dust variability over the past 240,000 years. Sci. Adv. 5, eaav1887 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • McGee, D. et al. The magnitude, timing and abruptness of changes in North African dust deposition over the last 20,000 yr. Earth Planet. Sci. Lett. 371–372, 163–176 (2013).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Bosmans, J. H. C., Hilgen, F. J., Tuenter, E. & Lourens, L. J. Obliquity forcing of low-latitude climate. Clim. Past 11, 1335–1346 (2015).

    Article 

    Google Scholar 

  • Bosmans, J. H. C., Drijfhout, S. S., Tuenter, E., Hilgen, F. J. & Lourens, L. J. Response of the North African summer monsoon to precession and obliquity forcings in the EC-Earth GCM. Clim. Dyn. 44, 279–297 (2014).

    Article 

    Google Scholar 

  • Mantsis, D. F. et al. The response of large-scale circulation to obliquity-induced changes in meridional heating gradients. J. Clim. 27, 5504–5516 (2014).

    ADS 
    Article 

    Google Scholar 

  • Rachmayani, R., Prange, M. & Schulz, M. Intra-interglacial climate variability: model simulations of Marine Isotope Stages 1, 5, 11, 13, and 15. Clim. Past 12, 677–695 (2016).

    Article 

    Google Scholar 

  • Chou, C. & Neelin, J. D. Mechanisms limiting the northward extent of the northern summer monsoons over North America, Asia, and Africa. J. Clim. 16, 406–425 (2003).

    ADS 
    Article 

    Google Scholar 

  • Bischoff, T., Schneider, T. & Meckler, A. N. A conceptual model for the response of tropical rainfall to orbital variations. J. Clim. 30, 8375–8391 (2017).

    ADS 
    Article 

    Google Scholar 

  • Ehleringer, J. R., Cerling, T. E. & Helliker, B. R. C4 photosynthesis, atmospheric CO2, and climate.

  • Bond, W. J. & Midgley, G. F. A proposed CO2-controlled mechanism of woody plant invasion in grasslands and savannas. Glob. Chang. Biol. 6, 865–869 (2000).

    ADS 
    Article 

    Google Scholar 

  • Lehmann, C. E. R., Archibald, S. A., Hoffmann, W. A. & Bond, W. J. Deciphering the distribution of the savanna biome. N. Phytol. 191, 197–209 (2011).

    Article 

    Google Scholar 

  • Vallé, F., Dupont, L. M., Leroy, S. A. G. G., Schefuß, E. & Wefer, G. Pliocene environmental change in West Africa and the onset of strong NE trade winds (ODP Sites 659 and 658). Palaeogeogr. Palaeoclimatol. Palaeoecol. 414, 403–414 (2014).

    Article 

    Google Scholar 

  • Leroy, S. & Dupont, L. Development of vegetation and continental aridity in northwestern Africa during the Late Pliocene: the pollen record of ODP site 658. Palaeogeogr. Palaeoclimatol. Palaeoecol. 109, 295–316 (1994).

    Article 

    Google Scholar 

  • Huang, Y., Dupont, L., Sarnthein, M., Hayes, J. M. & Eglinton, G. Mapping of C4 plant input from North West Africa into North East Atlantic sediments. Geochim. Cosmochim. Acta 64, 3505–3513 (2000).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Buitenwerf, R., Bond, W. J., Stevens, N. & Trollope, W. S. W. Increased tree densities in South African savannas: >50 years of data suggests CO2 as a driver. Glob. Chang. Biol. 18, 675–684 (2012).

    ADS 
    Article 

    Google Scholar 

  • Stevens, N., Lehmann, C. E. R., Murphy, B. P. & Durigan, G. Savanna woody encroachment is widespread across three continents. Glob. Chang. Biol. 23, 235–244 (2017).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Stevens, N., Erasmus, B. F. N., Archibald, S. & Bond, W. J. Woody encroachment over 70 years in South African savannahs: overgrazing, global change or extinction aftershock? Philos. Trans. R. Soc. B Biol. Sci. 371, (2016).

  • Kgope, B. S., Bond, W. J. & Midgley, G. F. Growth responses of African savanna trees implicate atmospheric [CO2] as a driver of past and current changes in savanna tree cover. Austral. Ecol. 35, 451–463 (2010).

    Article 

    Google Scholar 

  • Scheff, J., Seager, R., Liu, H., Coats, S. & Observatory, L. E. Are glacials dry? Consequences for paleoclimatology and for greenhouse warming. J. Clim. 30, 6593–6609 (2017).

    ADS 
    Article 

    Google Scholar 

  • Bragg, F. J. et al. Stable isotope and modelling evidence for CO2 as a driver of glacial-interglacial vegetation shifts in southern Africa. Biogeosciences 10, 2001–2010 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Bhattacharya, T., Tierney, J. E., Addison, J. A. & Murray, J. W. Ice-sheet modulation of deglacial North American monsoon intensification. Nat. Geosci. 11, 848–852 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • DiNezio, P. N. et al. Glacial changes in tropical climate amplified by the Indian Ocean. Sci. Adv. 4, 1–12 (2018).

    Article 

    Google Scholar 

  • Kuechler, R. R., Schefuß, E., Beckmann, B., Dupont, L. & Wefer, G. NW African hydrology and vegetation during the Last Glacial cycle reflected in plant-wax-specific hydrogen and carbon isotopes. Quat. Sci. Rev. 82, 56–67 (2013).

    ADS 
    Article 

    Google Scholar 

  • Raymo, M. E. & Nisancioglu, K. H. The 41 kyr world: Milankovitch’s other unsolved mystery. Paleoceanography 18, 1011 (2003).

  • Davis, B. A. S. & Brewer, S. Orbital forcing and role of the latitudinal insolation/temperature gradient. Clim. Dyn. 32, 143–165 (2009).

    Article 

    Google Scholar 

  • Bosmans, J. H. C. et al. Precession and obliquity forcing of the freshwater budget over the Mediterranean. Quat. Sci. Rev. 123, 16–30 (2015).

    ADS 
    Article 

    Google Scholar 

  • McGee, D., Broecker, W. S. & Winckler, G. Gustiness: the driver of glacial dustiness? Quat. Sci. Rev. 29, 2340–2350 (2010).

    ADS 
    Article 

    Google Scholar 

  • Bradtmiller, L. I. et al. Changes in biological productivity along the northwest African margin over the past 20,000 years. Paleoceanography 31, 185–202 (2016).

    ADS 
    Article 

    Google Scholar 

  • Guan, K., Wood, E. F. & Caylor, K. K. Multi-sensor derivation of regional vegetation fractional cover in Africa. Remote Sens. Environ. 124, 653–665 (2012).

    ADS 
    Article 

    Google Scholar 

  • Ehleringer, J. R., Cerling, T. E. & Helliker, B. R. C4 photosynthesis, atmospheric CO2, and climate. Oecologia 112, 285–299 (1997).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Sage, R. F. The evolution of C4 photosynthesis. N. Phytol. 161, 341–370 (2004).

    CAS 
    Article 

    Google Scholar 

  • Lloyd, J. et al. Contributions of woody and herbaceous vegetation to tropical savanna ecosystem productivity: a quasi-global estimate. Tree Physiol. 28, 451–468 (2008).

    PubMed 
    Article 

    Google Scholar 

  • Archibald, S. & Hempson, G. P. Competing consumers: contrasting the patterns and impacts of fire and mammalian herbivory in Africa. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150309 (2016).

  • Elderfield, H. et al. Evolution of ocean temperature. Science 337, 704–709 (2012).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hooghiemstra, H., Lézine, A. M., Leroy, S. A. G., Dupont, L. & Marret, F. Late Quaternary palynology in marine sediments: a synthesis of the understanding of pollen distribution patterns in the NW African setting. Quat. Int. 148, 29–44 (2006).

    Article 

    Google Scholar 

  • Dupont, L. M. Vegetation zones in NW Africa during the brunhes chron reconstructed from marine palynological data. Quat. Sci. Rev. 12, 189–202 (1993).

    ADS 
    Article 

    Google Scholar 

  • Dallmeyer, A., Claussen, M., Lorenz, S. J. & Shanahan, T. The end of the African humid period as seen by a transient comprehensive Earth system model simulation of the last 8000 years. Clim 16, 117–140 (2020).

    ADS 

    Google Scholar 

  • Collins, J. A. et al. Interhemispheric symmetry of the tropical African rainbelt over the past 23,000 years. Nat. Geosci. 4, 42–45 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Pastouret, L., Chamley, H., Delibrias, G., Duplessy, J. & Thiede, J. Late quaternary climatic changes in western tropical africa deduced from deep-sea sedimentation off the Niger delta. Oceanol. Acta 1, 217–232 (1978).

    CAS 

    Google Scholar 

  • Tierney, J. E., Lewis, S. C., Cook, B. I., LeGrande, A. N. & Schmidt, G. A. Model, proxy and isotopic perspectives on the East African Humid Period. Earth Planet. Sci. Lett. 307, 103–112 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • COHMAP members. Climatic changes of the last 18,000 years: observations and model simulations. Science 241, 1043–1052 (1988).

    Article 

    Google Scholar 

  • Street-Perrott, F. A., Marchand, D. S., Roberts, N. & Harrison, S. P. Global lake-level variations from 18,000 to 0 years ago: a palaeoclimate analysis. U.S. Department of Energy Technical Report 46, 20545 (1989).

  • de Menocal, P. B. & Tierney, J. E. Green Sahara: African humid periods paced by Earth’ s orbital changes. Nat. Educ. Knowl. 3(10):12 (2012).

  • Sage, R. F. & Kubien, D. S. Quo vadis C4? An ecophysiological perspective on global change and the future of C4 plants. Photosynth. Res. 77, 209–225 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Sarnthein, M., Tetzlaff, G., Koopmann, B., Wolter, K. & Pflaumann, U. Glacial and interglacial wind regimes over the eastern subtropical Atlantic and North-West Africa. Nature 293, 193–196 (1981).

    ADS 
    Article 

    Google Scholar 

  • Rowland, G. H. et al. The spatial distribution of aeolian dust and terrigenous fluxes in the tropical Atlantic ocean since the last glacial maximum. Paleoceanogr. Paleoclimatol. 36, 1–17 (2021).

    Article 

    Google Scholar 

  • Polissar, P. J., Rose, C., Uno, K. T., Phelps, S. R. & DeMenocal, P. Synchronous rise of African C4 ecosystems 10 million years ago in the absence of aridification. Nat. Geosci. 12, 657–660 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Jullien, E. et al. Low-latitude “dusty events” vs. high-latitude “icy Heinrich events”. Quat. Res. 68, 379–386 (2007).

    Article 

    Google Scholar 

  • Pye, K. Aeolian Dust and Dust Deposits. (Academic Press, 1987).

  • Skonieczny, C. et al. A three-year time series of mineral dust deposits on the West African margin: sedimentological and geochemical signatures and implications for interpretation of marine paleo-dust records. Earth Planet. Sci. Lett. 364, 145–156 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Malaizé, B. et al. The impact of African aridity on the isotopic signature of Atlantic deep waters across the Middle Pleistocene Transition. Quat. Res. 77, 182–191 (2012).

    Article 
    CAS 

    Google Scholar 

  • Lisiecki, L. E. & Raymo, M. E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ 18O records. Paleoceanography 20, 1–17 (2005).

    Google Scholar 

  • Polissar, P. J. & D’Andrea, W. J. Uncertainty in paleohydrologic reconstructions from molecular D values. Geochim. Cosmochim. Acta 129, 146–156 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Eggleston, S., Schmitt, J., Bereiter, B., Schneider, R. & Fischer, H. Evolution of the stable carbon isotope composition of atmospheric CO2 over the last glacial cycle. Paleoceanography 31, 434–452 (2016).

    ADS 
    Article 

    Google Scholar 

  • Tierney, J. E. & deMenocal, P. B. Abrupt shifts in Horn of Africa hydroclimate since the last glacial maximum. Science 342, 843–846 (2013).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Schrag, D. P. et al. The oxygen isotopic composition of seawater during the Last Glacial Maximum. Quat. Sci. Rev. 21, 331–342 (2002).

    ADS 
    Article 

    Google Scholar 

  • Vogts, A., Moossen, H., Rommerskirchen, F. & Rullkötter, J. Distribution patterns and stable carbon isotopic composition of alkanes and alkan-1-ols from plant waxes of African rain forest and savanna C3 species. Org. Geochem. 40, 1037–1054 (2009).

    CAS 
    Article 

    Google Scholar 

  • Garcin, Y. et al. Reconstructing C3 and C4 vegetation cover using n-alkane carbon isotope ratios in recent lake sediments from Cameroon, Western Central Africa. Geochim. Cosmochim. Acta 142, 482–500 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • White, F. The Vegetation of Africa. (UNESCO 1983).

  • Ritchie, J. C., Eyles, C. H. & Haynes, C. V. Sediment and pollen evidence for an early to mid-Holocene humid period in the eastern Sahara. Nature 314, 352–355 (1985).

    ADS 
    Article 

    Google Scholar 

  • Watrin, J. et al. Plant migration and plant communities at the time of the ‘green Sahara’. Comptes Rendus—Geosci. 341, 656–670 (2009).

    ADS 
    Article 

    Google Scholar 

  • Hély, C. et al. Holocene changes in African vegetation: tradeoff between climate and water availability. Clim 10, 681–686 (2014).

    ADS 

    Google Scholar 

  • Lézine, A. M. Timing of vegetation changes at the end of the Holocene Humid Period in desert areas at the northern edge of the Atlantic and Indian monsoon systems. Comptes Rendus—Geosci. 341, 750–759 (2009).

    ADS 
    Article 

    Google Scholar 

  • Dupont, L. M. & Hooghiemstra, H. The Saharan-Sahelian boundary during the Brunhes chron. Acta Bot. Neerl. 38, 405–415 (1989).

    Article 

    Google Scholar 

  • Sachse, D. et al. Molecular paleohydrology: interpreting the hydrogen-isotopic composition of lipid biomarkers from photosynthesizing organisms. Annu. Rev. Earth Planet. Sci. 40, 221–249 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Dansgaard, W. Stable isotopes in precipitation. Tellus 16, 436–468 (1964).

    ADS 
    Article 

    Google Scholar 

  • Worden, J. et al. Importance of rain evaporation and continental convection in the tropical water cycle. Nature 445, 528–532 (2007).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Risi, C., Bony, S. & Vimeux, F. Influence of convective processes on the isotopic composition (δ18O and δD) of precipitation and water vapor in the tropics: 2 Physical interpretation of the amount effect. J. Geophys. Res. Atmos. 113, D19306 (2008).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Risi, C. et al. What controls the isotopic composition of the African monsoon precipitation? Insights from event-based precipitation collected during the 2006 AMMA field campaign. Geophys. Res. Lett. 35, L24808 (2008).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Badewien, T., Vogts, A. & Rullkötter, J. n-Alkane distribution and carbon stable isotope composition in leaf waxes of C3 and C4 plants from Angola. Org. Geochem. 8990, 71–79 (2015).

  • Bezabih, M., Pellikaan, W. F., Tolera, A. & Hendriks, W. H. Evaluation of n-alkanes and their carbon isotope enrichments (d 13 C) as diet composition markers. Anim. Int. J. Anim. Biosci. 5, 57–66 (2011).

    CAS 
    Article 

    Google Scholar 

  • Kristen, I. et al. Biomarker and stable carbon isotope analyses of sedimentary organic matter from Lake Tswaing: evidence for deglacial wetness and early Holocene drought from South Africa. 143–160 https://doi.org/10.1007/s10933-009-9393-9 (2010).

  • Magill, C. R., Ashley, G. M. & Freeman, K. H. Water, plants, and early human habitats in eastern Africa. Proc. Natl Acad. Sci. 110, 1175–1180 (2013).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Cheddadi, R., Carré, M., Nourelbait, M., François, L. & Rhoujjati, A. Early Holocene greening of the Sahara requires Mediterranean winter rainfall. 1–7 https://doi.org/10.1073/pnas.2024898118 (2021).

  • Niedermeyer, E. M. et al. Orbital- and millennial-scale changes in the hydrologic cycle and vegetation in the western African Sahel: insights from individual plant wax δD and δ13C. Quat. Sci. Rev. 29, 2996–3005 (2010).

    ADS 
    Article 

    Google Scholar 

  • Adkins, J., deMenocal, P. & Eshel, G. The ‘African humid period’ and the record of marine upwelling from excess 230Th in Ocean Drilling Program Hole 658C. Paleoceanography 21, 1–14 (2006).

    Article 

    Google Scholar 

  • Mcgee, D. Glacial—interglacial precipitation changes. Annu. Rev. Mar. Sci. 12, 525–557 (2020).

  • Weldeab, S., Lea, D. W., Schneider, R. R. & Andersen, N. 155,000 Years of West African monsoon and ocean thermal evolution. Science 316, 1303–1307 (2007).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Schefuß, E., Schouten, S. & Schneider, R. R. Climatic controls on central African hydrology during the past 20,000 years. Nature 437, 1003–1006 (2005).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Weijers, J. W. H., Schefuß, E., Schouten, S. & Damsté, J. S. S. Coupled thermal and hydrological evolution of tropical Africa over the last deglaciation. Science 315, 1701–1704 (2007).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lezine, A. M. & Cazet, J. P. High-resolution pollen record from core KW31, Gulf of Guinea, documents the history of the lowland forests of West Equatorial Africa since 40,000 yr ago. Quat. Res. 64, 432–443 (2005).

    Article 

    Google Scholar 

  • Marret, F., Scourse, J. D., Versteegh, G., Fred Jansen, J. H. & Schneider, R. Integrated marine and terrestrial evidence for abrupt Congo River palaeodischarge fluctuations during the last deglaciation. J. Quat. Sci. 16, 761–766 (2001).

    Article 

    Google Scholar 

  • Dupont, L. & Behling, H. Land-sea linkages during deglaciation: High-resolution records from the eastern Atlantic off the coast of Namibia and Angola (ODP site 1078). Quat. Int. 148, 19–28 (2006).

    Article 

    Google Scholar 

  • Maley, J. & Brenac, P. Vegetation dynamics, palaeoenvironments and climatic changes in the forests of western Cameroon during the last 28,000 years B.P. Rev. Palaeobot. Palynol. 99, 157–187 (1998).

    Article 

    Google Scholar 

  • Giresse, P., Maley, J. & Brenac, P. Late Quaternary palaeoenvironments in the Lake Barombi Mbo (West Cameroon) deduced from pollen and carbon isotopes of organic matter. Palaeogeogr. Palaeoclimatol. Palaeoecol. 107, 65–78 (1994).

    Article 

    Google Scholar 

  • Maley, J. The African rain forest vegetation and palaeoenvironments during late quaternary. Clim. Change 19, 79–98 (1991).

    ADS 
    Article 

    Google Scholar 

  • Talbot, M. R. & Johannessen, T. A high resolution paleoclimatic record for the last 27,500 years in tropical West Africa from the carbon and nitrogen isotopic composition of lacustrine organic matter. Earth Planet. Sci. Lett. 110, 23–37 (1992).

  • Anhuf, D. et al. Paleo-environmental change in Amazonian and African rainforest during the LGM. Palaeogeogr. Palaeoclimatol. Palaeoecol. 239, 510–527 (2006).

    Article 

    Google Scholar 

  • Elenga, H. et al. Pollen-based biome reconstruction for southern Europe and Africa 18,000 yr BP. J. Biogeogr. 27, 621–634 (2000).

    Article 

    Google Scholar 

  • Gasse, F., Chalié, F., Vincens, A., Williams, M. A. J. & Williamson, D. Climatic patterns in equatorial and southern Africa from 30,000 to 10,000 years ago reconstructed from terrestrial and near-shore proxy data. Quat. Sci. Rev. 27, 2316–2340 (2008).

    ADS 
    Article 

    Google Scholar 

  • Wu, H., Guiot, J., Brewer, S. & Guo, Z. Climatic changes in Eurasia and Africa at the last glacial maximum and mid-Holocene: reconstruction from pollen data using inverse vegetation modelling. Clim. Dyn. 29, 211–229 (2007).

    Article 

    Google Scholar 

  • Harrison, S. P. & Prentice, C. I. Climate and CO2 controls on global vegetation distribution at the last glacial maximum: analysis based on palaeovegetation data, biome modelling and palaeoclimate simulations. Glob. Chang. Biol. 9, 983–1004 (2003).

    ADS 
    Article 

    Google Scholar 

  • Prentice, I. C., Cleator, S. F., Huang, Y. H., Harrison, S. P. & Roulstone, I. Reconstructing ice-age palaeoclimates: quantifying low-CO2 effects on plants. Glob. Planet. Change 149, 166–176 (2017).

    ADS 
    Article 

    Google Scholar 

  • Prentice, I. C., Villegas-Diaz, R. & Harrison, S. P. Accounting for atmospheric carbon dioxide variations in pollen-based reconstruction of past hydroclimates. Glob. Planet. Change 103790 https://doi.org/10.1016/j.gloplacha.2022.103790 (2022).

  • Abell, J. T., Winckler, G., Anderson, R. F. & Herbert, T. D. Poleward and weakened westerlies during Pliocene warmth. Nature 589, 70–75 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Winckler, G., Anderson, R. F. & Schlosser, P. Equatorial Pacific productivity and dust flux during the mid-Pleistocene climate transition. Paleoceanography 20, 1–10 (2005).

    Article 

    Google Scholar 

  • McGee, D. & Mukhopadhyay, S. Extraterrestrial He in sediments: from recorder of asteroid collisions to timekeeper of global environmental changes. in Advances in Isotope Geochemistry 155–176 (Springer, 2013). https://doi.org/10.1007/978-3-642-28836-4_7

  • Costa, K. & McManus, J. Efficacy of 230Th normalization in sediments from the Juan de Fuca Ridge, northeast Pacific Ocean. Geochim. Cosmochim. Acta 197, 215–225 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Nier, A. O. & Schlutter, D. J. Extraction of helium from individual interplanetary dust particles by step-heating. Meteoritics 27, 166–173 (1992).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • McGee, D. et al. Tracking eolian dust with helium and thorium: impacts of grain size and provenance. Geochim. Cosmochim. Acta 175, 47–67 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Bhattacharya, A. Application of the Helium Isotopic System to Accretion of Terrestrial and Extraterrestrial Dust Through the Cenozoic. (Harvard University, 2012).

  • Ebisuzaki, W. A method to estimate the statistical significance of a correlation when the data are serially correlated. J. Clim. 10, 2147–2153 (1997).

    ADS 
    Article 

    Google Scholar 

  • Torrence, C. & Compo, G. P. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79, 61–78 (1998).

    ADS 
    Article 

    Google Scholar 

  • Grinsted, A., Moore, J. C. & Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process. Geophys. 11, 515–533 (2004).

    Article 

    Google Scholar 

  • Berger, A. L. Long-term variations of daily insolation and Quaternary climatic changes. J. Atmos. Sci. 35, 2361–2367 (1978).

    ADS 
    Article 

    Google Scholar 

  • Berger, A. & Loutre, M. F. Insolation values for the climate of the last 10 million years. Quat. Sci. Rev. 10, 297–317 (1991).

    ADS 
    Article 

    Google Scholar 

  • Eisenman, I. & Huybers, P. J. daily_insolation. (2006).

  • Thyng, K. M., Greene, C. A., Hetland, R. D., Zimmerle, H. M. & DiMarco, S. F. True colors of oceanography. Oceanography 29, 9–13 (2016).

    Article 

    Google Scholar 

  • Lüthi, D. et al. High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453, 379–382 (2008).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Rommerskirchen, F. et al. A north to south transect of Holocene southeast Atlantic continental margin sediments: relationship between aerosol transport and compound-specific δ13C land plant biomarker and pollen records. Geochem. Geophys. Geosyst. 4, (2003).

  • Zhao, M., Dupont, L., Eglinton, G. & Teece, M. n-Alkane and pollen reconstruction of terrestrial climate and vegetation for N.W. Africa over the last 160 kyr. Org. Geochem. 34, 131–143 (2003).

    CAS 
    Article 

    Google Scholar 

  • Küechler, R. R. A Revised Orbital Forcing Concept of West African Climate and Vegetation Variability During the Pliocene and the Last Glacial Cycle-Molecular Isotopic Approach and Proxy Calibration. (University of Bremen, 2015).


  • Source: Ecology - nature.com

    Viscotoxin and lectin content in foliage and fruit of Viscum album L. on the main host trees of Hyrcanian forests

    Major biodiversity summit will go ahead in Canada not China: what scientists think