Marzluff, J. M. Worldwide urbanization and its effects on birds. In Avian Ecology and Conservation in an Urbanizing World (eds Marzluff, J. et al.) 19–47 (Springer, Boston, 2001).
Google Scholar
McKinney, M. L. Effects of urbanization on species richness: A review of plants and animals. Urban Ecosyst. 11, 161–176 (2008).
Google Scholar
Luniak, M. Synurbization–adaptation of animal wildlife to urban development in Proceedings 4th international urban wildlife symposium (eds. Shaw, W., Harris, L.,Vandruff, L.) 50–55 (University of Arizona, Tucson, ARI, 2004).
Isaksson, C. Impact of urbanization on birds in Bird Species how they arise, modify and vanish (ed. Tietze D. T.) 235–257 (Springer, 2018).
Minias, P. Successful colonization of a novel urban environment is associated with an urban behavioural syndrome in a reed-nesting waterbird. Ethology 121, 1178–1190 (2015).
Google Scholar
Møller, A. P. et al. Urban habitats and feeders both contribute to flight initiation distance reduction in birds. Behav. Ecol. 26, 861–865 (2015).
Google Scholar
Jokimäki, J. & Suhonen, J. Distribution and habitat selection of wintering birds in urban environments. Landsc. Urban Plan. 39, 253–263 (1998).
Google Scholar
Francis, R. A. & Chadwick, M. A. What makes a species synurbic?. Appl. Geogr. 32, 514–521 (2012).
Google Scholar
Møller, A. P. et al. High urban population density of birds reflects their timing of urbanization. Oecologia 170, 867–875 (2012).
Google Scholar
Tella, J. L. et al. Offspring body condition and immunocompetence are negatively affected by high breeding densities in a colonial seabird: A multiscale approach. Proc. R. Soc. B 268, 1455–1461 (2001).
Google Scholar
Savoca, M. S., Bonter, D. N., Zuckerberg, B., Dickinson, J. L. & Ellis, J. C. Nesting density is an important factor affecting chick growth and survival in the Herring Gull. Condor 113, 565–571 (2011).
Google Scholar
Minias, P., Włodarczyk, R. & Janiszewski, T. Opposing selective pressures may act on the colony size in a waterbird species. Evol. Ecol. 29, 283–297 (2015).
Google Scholar
Kamiński, M. et al. Density-dependence of nestling immune function and physiological condition in semi-precocial colonial bird: A cross-fostering experiment. Front. Zool. 18, 7 (2021).
Google Scholar
Ward, P. & Zahavi, A. The importance of certain assemblages of birds as “information-centres” for food-finding. Ibis 115, 517–534 (1973).
Google Scholar
Danchin, E. & Wagner, R. H. The evolution of coloniality: The emergence of new perspectives. Trends Ecol. Evol. 12, 342–347 (1997).
Google Scholar
Brown, C. R. & Brown, M. B. Coloniality in the Cliff Swallow: The Effect of Group Size on Social Behavior (University of Chicago Press, 1996).
Evans, J. C., Votier, S. C. & Dall, S. R. Information use in colonial living. Biol. Rev. 91, 658–672 (2016).
Google Scholar
Brown, C. R. & Brown, M. B. Avian coloniality. In Current Ornithology (eds Brown, C. R. & Brown, M. B.) 1–82 (Springer, Boston, 2001).
Coulson, J. C., Duncan, N. & Thomas, C. Changes in the breeding biology of the herring gull (Larus argentatus) induced by reduction in the size and density of the colony. J. Anim. Ecol. 51, 739–756 (1982).
Google Scholar
Ots, I. & Horak, P. Great tits Parus major trade health for reproduction. Proc. R. Soc. B. 263, 1443–1447 (1996).
Google Scholar
Richner, H. & Tripet, F. Ectoparasitism and the trade-off between current and future reproduction. Oikos 86, 535–538 (1999).
Google Scholar
Fokkema, R. W., Ubels, R. & Tinbergen, J. M. Great tits trade off future competitive advantage for current reproduction. Behav. Ecol. 27, 1656–1664 (2016).
Horak, P. & Leberton, J. D. Survival of adult Great Tits Parus major in relation to sex and habitat; a comparison of urban and rural populations. Ibis 140, 205–209 (1998).
Google Scholar
Stracey, C. M. & Robinson, S. K. Are urban habitats ecological traps for a native songbird? Season-long productivity, apparent survival, and site fidelity in urban and rural habitats. J. Avian Biol. 43, 50–60 (2012).
Google Scholar
Sepp, T., McGraw, K. J., Kaasik, A. & Giraudeau, M. A review of urban impacts on avian life-history evolution: Does city living lead to slower pace of life?. Glob. Change Biol. 24, 1452–1469 (2018).
Google Scholar
Phillips, J. N., Gentry, K. E., Luther, D. A. & Derryberry, E. P. Surviving in the city: Higher apparent survival for urban birds but worse condition on noisy territories. Ecosphere 9, e02440 (2018).
Google Scholar
Johnston, R. F. & Janiga, M. Feral Pigeons (Oxford University Press on Demand, 1995).
Giunchi, D., Mucci, N., Bigi, D., Mengoni, C. & Baldaccini, N. E. Feral pigeon populations: Their gene pool and links with local domestic breeds. Zoology 142, 125817 (2020).
Google Scholar
Sol, D. Artificial selection, naturalization, and fitness: Darwin’s pigeons revisited. Biol. J. Linn. Soc. 93, 657–665 (2008).
Google Scholar
Giunchi, D., Albores-Barajas, Y. V., Baldaccini, N. E., Vanni, L. & Soldatini, C. Feral pigeons: Problems, dynamics and control methods. In Integrated Pest Management and Pest Control. Current and Future Tactics (eds Soloneski, S. & Larramendy, M.) 215–240 (InTechOpen, London, 2012).
Senar, J. C., Navalpotro, H., Pascual, J. & Montalvo, T. Nicarbazin has no effect on reducing feral pigeon populations in Barcelona. Pest Manag. Sci. 77, 131–137 (2021).
Google Scholar
Rose, E., Nagel, P. & Haag-Wackernagel, D. Spatio-temporal use of the urban habitat by feral pigeons (Columba livia). Behav. Ecol. Sociobiol. 60, 242–254 (2006).
Google Scholar
Corbel, H. et al. Stress response varies with plumage colour and local habitat in feral pigeons. J. Ornithol. 157, 825–837 (2016).
Google Scholar
Møller, A. P., Merino, S., Brown, C. R. & Robertson, R. J. Immune defense and host sociality: A comparative study of swallows and martins. Am. Nat. 158, 136–145 (2001).
Google Scholar
Drzewińska-Chańko, J. et al. Immunocompetent birds choose larger breeding colonies. J. Anim. Ecol. https://doi.org/10.1111/1365-2656.13540 (2021).
Google Scholar
Saino, N., Suffritti, C., Martinelli, R., Rubolini, D. & Møller, A. P. Immune response covaries with corticosterone plasma levels under experimentally stressful conditions in nestling barn swallows (Hirundo rustica). Behav. Ecol. 14, 318–325 (2003).
Google Scholar
Goutte, A. et al. Long-term survival effect of corticosterone manipulation in black-legged kittiwakes. Gen. Comp. Endocrinol. 167, 246–251 (2010).
Google Scholar
Møller, A. P., Christe, P., Erritzøe, J. & Mavarez, J. Condition, disease and immune defence. Oikos 83, 301–306 (1998).
Google Scholar
Navarro, C., Marzal, A., De Lope, F. & Møller, A. P. Dynamics of an immune response in house sparrows Passer domesticus in relation to time of day, body condition and blood parasite infection. Oikos 101, 291–298 (2003).
Google Scholar
Toïgo, C., Gaillard, J. M., Van Laere, G., Hewison, M. & Morellet, N. How does environmental variation influence body mass, body size, and body condition? Roe deer as a case study. Ecography 29, 301–308 (2006).
Google Scholar
Jacquin, L. et al. A potential role for parasites in the maintenance of color polymorphism in urban birds. Oecologia 173, 1089–1099 (2013).
Google Scholar
Meillère, A., Brischoux, F., Parenteau, C. & Angelier, F. Influence of urbanization on body size, condition, and physiology in an urban exploiter: A multi-component approach. PLoS ONE https://doi.org/10.1371/journal.pone.0135685 (2015).
Google Scholar
Peig, J. & Green, A. J. New perspectives for estimating body condition from mass/length data: The scaled mass index as an alternative method. Oikos 118, 1883–1891 (2009).
Google Scholar
Jacquin, L. et al. Melanin-based coloration is related to parasite intensity and cellular immune response in an urban free living bird: The feral pigeon Columba livia. J. Avian Biol. 42, 11–15 (2011).
Google Scholar
Liker, A., Papp, Z., Bókony, V. & Lendvai, A. Z. Lean birds in the city: Body size and condition of house sparrows along the urbanization gradient. J. Anim. Ecol. 77, 789–795 (2008).
Google Scholar
Audet, J. N., Ducatez, S. & Lefebvre, L. The town bird and the country bird: Problem solving and immunocompetence vary with urbanization. Behav. Ecol. 27, 637–644 (2016).
Google Scholar
Kurucz, K., Purger, J. J. & Batáry, P. Urbanization shapes bird communities and nest survival, but not their food quantity. Glob. Ecol. Conserv. 26, e01475 (2021).
Google Scholar
Partecke, J., Schwabl, I. & Gwinner, E. Stress and the city: Urbanization and its effects on the stress physiology in European blackbirds. Ecology 87, 1945–1952 (2006).
Google Scholar
Bailly, J. et al. Negative impact of urban habitat on immunity in the great tit Parus major. Oecologia 182, 1053–1062 (2016).
Google Scholar
Glądalski, M. et al. Differences in use of bryophyte species in tit nests between two contrasting habitats: An urban park and a forest. Eur. Zool. J. 88, 807–815 (2021).
Google Scholar
Tella, J. L., Scheuerlein, A. & Ricklefs, R. E. Is cell–mediated immunity related to the evolution of life-history strategies in birds?. Proc. R. Soc. B 269, 1059–1066 (2002).
Google Scholar
Brown, C. R. & Brown, M. B. Empirical measurement of parasite transmission between groups in a colonial bird. Ecology 85, 1619–1626 (2004).
Google Scholar
O’Brien, V. A. & Brown, C. R. Group size and nest spacing affect Buggy Creek virus (Togaviridae: Alphavirus) infection in nestling house sparrows. PLoS ONE 6, e25521 (2011).
Google Scholar
Wilcoxen, T. E. et al. Effects of bird-feeding activities on the health of wild birds. Conserv. Physiol. 3, cov058 (2015).
Google Scholar
Moyers, S. C., Adelman, J. S., Farine, D. R., Thomason, C. A. & Hawley, D. M. Feeder density enhances house finch disease transmission in experimental epidemics. Philos. Trans. R. Soc. B 373, 20170090 (2018).
Google Scholar
Møller, A. P. Successful city dwellers: A comparative study of the ecological characteristics of urban birds in the Western Palearctic. Oecologia 159, 849–858 (2009).
Google Scholar
Watson, H., Videvall, E., Andersson, M. N. & Isaksson, C. Transcriptome analysis of a wild bird reveals physiological responses to the urban environment. Sci. Rep. 7, 44180 (2017).
Google Scholar
Hasselquist, D. & Nilsson, J. Å. Physiological mechanisms mediating costs of immune responses: What can we learn from studies of birds?. Anim. Behav. 83, 1303–1312 (2012).
Google Scholar
Biard, C., Monceau, K., Motreuil, S. & Moreau, J. Interpreting immunological indices: The importance of taking parasite community into account. An example in blackbirds Turdus merula. Methods Ecol. Evol. 6, 960–972 (2015).
Google Scholar
Leclaire, S., Czirják, G. Á., Hammouda, A. & Gasparini, J. Feather bacterial load shapes the trade-off between preening and immunity in pigeons. BMC Evol. Biol. 15, 60 (2015).
Google Scholar
Vinkler, M., Adelman, J. S. & Ardia, D. R. Evolutionary and ecological immunology. In Avian Immunology 3rd edn (eds Kaspers, B. et al.) 519–558 (Academic Press, London, 2021).
Davis, A. K., Maney, D. L. & Maerz, J. C. The use of leukocyte profiles to measure stress in vertebrates: A review for ecologists. Funct. Ecol. 22, 760–772 (2008).
Google Scholar
Indykiewicz, P., Podlaszczuk, P., Kamiński, M., Włodarczyk, R. & Minias, P. Central–periphery gradient of individual quality within a colony of Black-headed Gulls. Ibis 161, 744–758 (2019).
Google Scholar
Vleck, C. M., Vertalino, N., Vleck, D. & Bucher, T. L. Stress, corticosterone, and heterophil to lymphocyte ratios in free-living Adélie penguins. Condor 102, 392–400 (2000).
Google Scholar
Davis, A. K., Cook, K. C. & Altizer, S. Leukocyte profiles in wild house finches with and without mycoplasmal conjunctivitis, a recently emerged bacterial disease. EcoHealth 1, 362–373 (2004).
Google Scholar
Lobato, E., Moreno, J., Merino, S., Sanz, J. J. & Arriero, E. Haematological variables are good predictors of recruitment in nestling pied flycatchers (Ficedula hypoleuca). Ecoscience 12, 27–34 (2005).
Google Scholar
Bobby Fokidis, H., Greiner, E. C. & Deviche, P. Interspecific variation in avian blood parasites and haematology associated with urbanization in a desert habitat. J. Avian Biol. 39, 300–310 (2008).
Google Scholar
Padgett, D. A. & Glaser, R. How stress influences the immune response. Trends Immunol. 24, 444–448 (2003).
Google Scholar
Dimitrov, S. et al. Cortisol and epinephrine control opposing circadian rhythms in T cell subsets. Blood 113, 5134–5143 (2009).
Google Scholar
Ilmonen, P., Hasselquist, D., Langefors, Å. & Wiehn, J. Stress, immunocompetence and leukocyte profiles of pied flycatchers in relation to brood size manipulation. Oecologia 136, 148–154 (2003).
Google Scholar
Minias, P., Gach, K., Włodarczyk, R. & Janiszewski, T. Colony size affects nestling immune function: A cross-fostering experiment in a colonial waterbird. Oecologia 190, 333–341 (2019).
Google Scholar
Cyr, N. E., Earle, K., Tam, C. & Romero, L. M. The effect of chronic psychological stress on corticosterone, plasma metabolites, and immune responsiveness in European starlings. Gen. Comp. Endocrinol. 154, 59–66 (2007).
Google Scholar
Schoech, S. J., Bowman, R. & Reynolds, S. J. Food supplementation and possible mechanisms underlying early breeding in the Florida Scrub-Jay (Aphelocoma coerulescens). Horm. Behav. 46, 565–573 (2004).
Google Scholar
Ibáñez-Álamo, J. D. et al. Physiological stress does not increase with urbanization in European blackbirds: Evidence from hormonal, immunological and cellular indicators. Sci. Total Environ. 721, 137332 (2020).
Google Scholar
Bonier, F. Hormones in the city: Endocrine ecology of urban birds. Horm. Behav. 61, 763–772 (2012).
Google Scholar
Valdebenito, J. O. et al. Seasonal variation in sex-specific immunity in wild birds. Sci. Rep. 11, 1349 (2021).
Google Scholar
Hetmański, T. Timing of breeding in the Feral Pigeon Columba livia f. domestica in Słupsk (NW Poland). Acta Ornithol. 39, 105–110 (2004).
Google Scholar
Dijkstra, C. et al. An adaptive annual rhythm in the sex of first pigeon eggs. Behav. Ecol. Sociobiol. 64, 1393–1402 (2010).
Google Scholar
Swanson, D. L. Seasonal variation of vascular oxygen transport in the dark-eyed junco. Condor 92, 62–66 (1990).
Google Scholar
Niedojadlo, J., Bury, A., Cichoń, M., Sadowska, E. T. & Bauchinger, U. Lower haematocrit, haemoglobin and red blood cell number in zebra finches acclimated to cold compared to thermoneutral temperature. J. Avian Biol. 49, e01596 (2018).
Google Scholar
Roulin, A. Condition-dependence, pleiotropy and the handicap principle of sexual selection in melanin-based colouration. Biol. Rev. 91, 328–348 (2016).
Google Scholar
Statistics Poland. https://stat.gov.pl/en/ (2021).
Sol, D. & Senar, J. C. Urban pigeon populations: Stability, home range, and the effect of removing individuals. Can. J. Zool. 73, 1154–1160 (1995).
Google Scholar
Minias, P. Reproduction and survival in the city: Which fitness components drive urban colonization in a reed-nesting waterbird?. Curr. Zool. 62, 79–87 (2016).
Google Scholar
Meissner, W. & Fischer, I. Sexing of common gull, Larus canus, using linear measurements. Folia Zool. 66, 183–188 (2017).
Google Scholar
Haag-Wackernagel, D., Heeb, P. & Leiss, A. Phenotype-dependent selection of juvenile urban feral pigeons Columba livia. Bird Study 53, 163–170 (2006).
Google Scholar
Harter, T. S., Reichert, M., Brauner, C. J. & Milsom, W. K. Validation of the i-STAT and HemoCue systems for the analysis of blood parameters in the bar-headed goose, Anser indicus. Conserv. Physiol. 3, cov021 (2015).
Google Scholar
Minias, P. The use of haemoglobin concentrations to assess physiological condition in birds: A review. Conserv. Physiol. 3, cov007 (2015).
Google Scholar
Martin, L. B. et al. Phytohemagglutinin-induced skin swelling in birds: Histological support for a classic immunoecological technique. Funct. Ecol. 20, 290–299 (2006).
Google Scholar
Brown, G. P., Shilton, C. M. & Shine, R. Measuring amphibian immunocompetence: Validation of the phytohemagglutinin skin-swelling assay in the cane toad, Rhinella marina. Methods Ecol. Evol. 2, 341–348 (2011).
Google Scholar
Kennedy, M. W. & Nager, R. G. The perils and prospects of using phytohaemagglutinin in evolutionary ecology. Trends Ecol. Evol. 21, 653–655 (2006).
Google Scholar
Vinkler, M., Bainová, H. & Albrecht, T. Functional analysis of the skin-swelling response to phytohaemagglutinin. Funct. Ecol. 24, 1081–1086 (2010).
Google Scholar
Turmelle, A. S., Ellison, J. A., Mendonça, M. T. & McCracken, G. F. Histological assessment of cellular immune response to the phytohemagglutinin skin test in Brazilian free-tailed bats (Tadarida brasiliensis). J. Comp. Physiol. B 180, 1155–1164 (2010).
Google Scholar
Griffiths, R., Double, M. C., Orr, K. & Dawson, R. J. A DNA test to sex most birds. Mol. Ecol. 7, 1071–1075 (1998).
Google Scholar
Çakmak, E., Akın Pekşen, Ç. & Bilgin, C. C. Comparison of three different primer sets for sexing birds. J. Vet. Diagn. Investig. 29, 59–63 (2017).
Google Scholar
Kaiser, H. F. The application of electronic computers to factor analysis. Educ. Psychol. Meas. 20, 141–151 (1960).
Google Scholar
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
Google Scholar
Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).
Google Scholar
Jaeger, B. C., Edwards, L. J., Das, K. & Sen, P. K. An R 2 statistic for fixed effects in the generalized linear mixed model. J. Appl. Stat. 44, 1086–1105 (2017).
Google Scholar
Johnson, P. C. Extension of Nakagawa & Schielzeth’s R2GLMM to random slopes models. Methods Ecol. Evol. 5, 944–946 (2014).
Google Scholar
Bartoń, K. MuMIn: Multi-model inference. R package ver. 1.43.17. CRAN: The Comprehensive R Archive Network, Berkeley, CA, USA. https://CRAN.R-project.org/package=MuMIn (2020).
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).
Google Scholar
Kahle, D. J. & Wickham, H. ggmap: Spatial visualization with ggplot2. R J. 5, 144–161 (2013).
Google Scholar
Source: Ecology - nature.com