in

Population genomic signatures of the oriental fruit moth related to the Pleistocene climates

  • Hewitt, G. M. Genetic consequences of climatic oscillations in the Quaternary. Philos. Trans. R. Soc. Lond. Ser. B, Biol. Sci. 359, 183–195 (2004).

    CAS 

    Google Scholar 

  • Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 405, 907–913 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Abellán, P., Benetti, C. J., Angus, R. B. & Ribera, I. A review of Quaternary range shifts in European aquatic Coleoptera. Glob. Ecol. Biogeogr. 20, 87–100 (2011).

    Google Scholar 

  • Geber, M. A. Ecological and evolutionary limits to species geographic ranges. Am. Naturalist 178, S1–S5 (2011).

    Google Scholar 

  • Miller, T. E. X. et al. Eco-evolutionary dynamics of range expansion. Ecology 101, e03139 (2020).

    PubMed 

    Google Scholar 

  • Clark, P. U. et al. The last glacial maximum. Science 325, 710 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Bidegaray-Batista, L. et al. Imprints of multiple glacial refugia in the Pyrenees revealed by phylogeography and palaeodistribution modelling of an endemic spider. Mol. Ecol. 25, 2046–2064 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Stone, G. N. et al. Tournament ABC analysis of the western Palaearctic population history of an oak gall wasp, Synergus umbraculus. Mol. Ecol. 26, 6685–6703 (2017).

    PubMed 

    Google Scholar 

  • Walton, W., Stone, G. N. & Lohse, K. Discordant Pleistocene population size histories in a guild of hymenopteran parasitoids. Mol. Ecol. https://doi.org/10.1111/mec.16074 (2021).

  • Grant, K. M. et al. Sea-level variability over five glacial cycles. Nat. Commun. 5, 5076 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Ye, Z., Zhu, G., Chen, P., Zhang, D. & Bu, W. Molecular data and ecological niche modelling reveal the Pleistocene history of a semi-aquatic bug (Microvelia douglasi douglasi) in East Asia. Mol. Ecol. 23, 3080–3096 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Wei, S. J. et al. Population genetic structure and approximate Bayesian computation analyses reveal the southern origin and northward dispersal of the oriental fruit moth Grapholita molesta (Lepidoptera: Tortricidae) in its native range. Mol. Ecol. 24, 4094–4111 (2015).

    PubMed 

    Google Scholar 

  • Petit, R. et al. Glacial refugia: hotspots but not melting pots of genetic diversity. Science 300, 1563–1565 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • Hoffmann, A. A. & Sgro, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Hewitt, G. M. Speciation, hybrid zones and phylogeography—or seeing genes in space and time. Mol. Ecol. 10, 537–549 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Bradburd, G. S. & Ralph, P. L. Spatial population genetics: it’s about time. Annu. Rev. Ecol., Evol. Syst. 50, 427–449 (2019).

    Google Scholar 

  • de Lafontaine, G., Ducousso, A., Lefevre, S., Magnanou, E. & Petit, R. J. Stronger spatial genetic structure in recolonized areas than in refugia in the European beech. Mol. Ecol. 22, 4397–4412 (2013).

    PubMed 

    Google Scholar 

  • Hoban, S., Dawson, A., Robinson, J. D., Smith, A. B. & Strand, A. E. Inference of biogeographic history by formally integrating distinct lines of evidence: genetic, environmental niche and fossil. Ecography 42, 1991–2011 (2019).

    Google Scholar 

  • Stone, G. N. et al. The phylogeographical clade trade: tracing the impact of human‐mediated dispersal on the colonization of northern Europe by the oak gallwasp Andricus kollari. Mol. Ecol. 16, 2768–2781 (2007).

    PubMed 

    Google Scholar 

  • McGaughran, A., Laver, R. & Fraser, C. Evolutionary responses to warming. Trends Ecol. Evol. 36, 591–600 (2021).

    PubMed 

    Google Scholar 

  • van Boheemen, L. A. & Hodgins, K. A. Rapid repeatable phenotypic and genomic adaptation following multiple introductions. Mol. Ecol. 29, 4102–4117 (2020).

    PubMed 

    Google Scholar 

  • Ruegg, K. et al. Ecological genomics predicts climate vulnerability in an endangered southwestern songbird. Ecol. Lett. 21, 1085–1096 (2018).

    PubMed 

    Google Scholar 

  • Fitzpatrick, M. C. & Keller, S. R. Ecological genomics meets community-level modelling of biodiversity: mapping the genomic landscape of current and future environmental adaptation. Ecol. Lett. 18, 1–16 (2015).

    PubMed 

    Google Scholar 

  • Sun, Y., Bossdorf, O., Grados, R. D., Liao, Z. & Müller-Schärer, H. Rapid genomic and phenotypic change in response to climate warming in a widespread plant invader. Glob. Change Biol. 26, 6511–6522 (2020).

    Google Scholar 

  • Høye, T. T. Arthropods and climate change-arctic challenges and opportunities. Curr. Opin. Insect Sci. 41, 40–45 (2020).

    PubMed 

    Google Scholar 

  • Maino, J. L., Kong, J. D., Hoffmann, A. A., Barton, M. G. & Kearney, M. R. Mechanistic models for predicting insect responses to climate change. Curr. Opin. Insect Sci. 17, 81–86 (2016).

    PubMed 

    Google Scholar 

  • Hoffmann, A. A., Weeks, A. R. & Sgrò, C. M. Opportunities and challenges in assessing climate change vulnerability through genomics. Cell 184, 1420–1425 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • van der Geest, L. P. S. & Evenhuis, H. H. World Crop Pests 5: Tortricid Pests Their Biology, Natural Enemies and Control. Vol. 5 (Elsevier, 1991).

  • Wan, F. H. et al. A chromosome-level genome assembly of Cydia pomonella provides insights into chemical ecology and insecticide resistance. Nat. Commun. 10, https://doi.org/10.1038/s41467-41019-12175-41469 (2019).

  • Kirk, H., Dorn, S. & Mazzi, D. Worldwide population genetic structure of the oriental fruit moth (Grapholita molesta), a globally invasive pest. BMC Ecol. 13, 12 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Torriani, M. V., Mazzi, D., Hein, S. & Dorn, S. Structured populations of the oriental fruit moth in an agricultural ecosystem. Mol. Ecol. 19, 2651–2660 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Song, W. et al. Multiple refugia from penultimate glaciations in East Asia demonstrated by phylogeography and ecological modelling of an insect pest. BMC Evolut. Biol. 18, 152 (2018).

    Google Scholar 

  • SuomMainen, E. in Chromosome Today Vol. 2 (eds. Darlington, C. D. & Lewis, K. R.) 122–138 (Plenum Press, 1969).

  • Nguyen, P. et al. Neo-sex chromosomes and adaptive potential in tortricid pests. Proc. Natl Acad. Sci. USA 110, 6931–6936 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fuková, I., Nguyen, P. & Marec, F. E. Codling moth cytogenetics: karyotype, chromosomal location of rDNA, and molecular differentiation of sex chromosomes. Genome 48, 1083–1092 (2005).

    PubMed 

    Google Scholar 

  • Cao, L. J. et al. Local climate adaptation and gene flow in the native range of two co-occurring fruit moths with contrasting invasiveness. Mol. Ecol. 30, 4204–4219 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Caprioli, M. et al. Clock gene variation is associated with breeding phenology and maybe under directional selection in the migratory barn swallow. PLoS ONE 7, 7 (2012).

    Google Scholar 

  • Krabbenhoft, T. J. & Turner, T. F. clock gene evolution: seasonal timing, phylogenetic signal, or functional constraint? J. Heredity 105, 407–415 (2014).

    Google Scholar 

  • Zhang, J. et al. Comparative transcriptomes analysis of the wing disc between two silkworm strains with different size of wings. PLoS ONE 12, e0179560 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhu, Q. S., Arakane, Y., Beeman, R. W., Kramer, K. J. & Muthukrishnan, S. Functional specialization among insect chitinase family genes revealed by RNA interference. Proc. Natl Acad. Sci. USA 105, 6650–6655 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, C., Yang, H., Tang, B., Yang, W.-J. & Jin, D.-C. Identification and functional analysis of chitinase 7 gene in white-backed planthopper, Sogatella furcifera. Comp. Biochem. Physiol. B-Biochem. Mol. Biol. 208, 19–28 (2017).

    PubMed 

    Google Scholar 

  • Yang, X. et al. Characterization and functional analysis of chitinase family genes involved in nymph-adult transition of Sogatella furcifera. Insect Sci. 28, 901–916 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Pesch, Y. Y., Riedel, D., Patil, K. R., Loch, G. & Behr, M. Chitinases and Imaginal disc growth factors organize the extracellular matrix formation at barrier tissues in insects. Sci. Rep. 6, 18340 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Charron, Y. et al. The serpin Spn5 is essential for wing expansion in Drosophila melanogaster. Int. J. Dev. Biol. 52, 933–942 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Charlesworth, B., Campos, J. L. & Jackson, B. C. Faster-X evolution: theory and evidence from Drosophila. Mol. Ecol. 27, 3753–3771 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Meisel, R. P. & Connallon, T. The faster-X effect: integrating theory and data. Trends Genet. 29, 537–544 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sayres, M. A. W. Genetic diversity on the sex chromosomes. Genome Biol. Evol. 10, 1064–1078 (2018).

    Google Scholar 

  • Ellegren, H. The different levels of genetic diversity in sex chromosomes and autosomes. Trends Genet. 25, 278–284 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Ellegren, H. & Galtier, N. Determinants of genetic diversity. Nat. Rev. Genet. 17, 422–433 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Pool, J. E. et al. Population genomics of sub-saharan Drosophila melanogaster: African diversity and non-african admixture. PLoS Genet. 8, e1003080–e1003080 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sackton, T. B. et al. Positive selection drives faster-Z evolution in silkmoths. Evolution 68, 2331–2342 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Fraisse, C., Picard, M. A. L. & Vicoso, B. The deep conservation of the Lepidoptera Z chromosome suggests a non-canonical origin of the W. Nat. Commun. 8, https://doi.org/10.1038/s41467-017-01663-5 (2017).

  • Sahara, K., Yoshido, A. & Traut, W. Sex chromosome evolution in moths and butterflies. Chromosome Res. 20, 83–94 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Ma, C. et al. Mitochondrial genomes reveal the global phylogeography and dispersal routes of the migratory locust. Mol. Ecol. 21, 4344–4358 (2012).

    PubMed 

    Google Scholar 

  • Zhang, B., Edwards, O., Kang, L. & Fuller, S. Russian wheat aphids (Diuraphis noxia) in China: native range expansion or recent introduction? Mol. Ecol. 21, 2130–2144 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Provan, J. & Bennett, K. Phylogeographic insights into cryptic glacial refugia. Trends Ecol. Evol. 23, 564–571 (2008).

    PubMed 

    Google Scholar 

  • Saino, N. et al. Polymorphism at the Clock gene predicts phenology of long-distance migration in birds. Mol. Ecol. 24, 1758–1773 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Zhang, S. P., Xu, X. L., Wang, W. W., Yang, W. Y. & Liang, W. Clock gene is associated with individual variation in the activation of reproductive endocrine and behavior of Asian short toed lark. Sci. Rep. 7, 8 (2017).

    CAS 

    Google Scholar 

  • Liedvogel, M., Szulkin, M., Knowles, S. C. L., Wood, M. J. & Sheldon, B. C. Phenotypic correlates of Clock gene variation in a wild blue tit population: evidence for a role in seasonal timing of reproduction. Mol. Ecol. 18, 2444–2456 (2009).

    PubMed 

    Google Scholar 

  • Saino, N. et al. Migration phenology and breeding success are predicted by methylation of a photoperiodic gene in the barn swallow. Sci. Rep. 7, 10 (2017).

    Google Scholar 

  • e Silva, O. A. B. N., Bernardi, D., Botton, M. & Garcia, M. S. Biological characteristics of Grapholita molesta (Lepidoptera: Tortricidae) induced to diapause in laboratory. J. Insect Sci. 14, 217 (2014).

    Google Scholar 

  • Renfree, M. B. & Shaw, G. Diapause. Annu. Rev. Physiol. 62, 353–375 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Ochocki, B. M. & Miller, T. E. X. Rapid evolution of dispersal ability makes biological invasions faster and more variable. Nat. Commun. 8, 8 (2017).

    Google Scholar 

  • Ochocki, B. M., Saltz, J. B. & Miller, T. E. X. Demography-dispersal trait correlations modify the eco-evolutionary dynamics of range expansion. Am. Naturalist 195, 231–246 (2020).

    Google Scholar 

  • Travis, J. M. J. & Dytham, C. Dispersal evolution during invasions. Evolut. Ecol. Res. 4, 1119–1129 (2002).

    Google Scholar 

  • Phillips, B. L., Brown, G. P. & Shine, R. Life-history evolution in range-shifting populations. Ecology 91, 1617–1627 (2010).

    PubMed 

    Google Scholar 

  • Shine, R., Brown, G. P. & Phillips, B. L. An evolutionary process that assembles phenotypes through space rather than through time. Proc. Natl Acad. Sci. USA 108, 5708–5711 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Perkins, T. A., Phillips, B. L., Baskett, M. L. & Hastings, A. Evolution of dispersal and life history interact to drive accelerating spread of an invasive species. Ecol. Lett. 16, 1079–1087 (2013).

    PubMed 

    Google Scholar 

  • Phillips, B. L. & Perkins, T. A. Spatial sorting as the spatial analogue of natural selection. Theor. Ecol. 12, 155–163 (2019).

    Google Scholar 

  • Angert, A. L., Bontrager, M. G. & Ågren, J. What do we really know about adaptation at range edges? Annu. Rev. Ecol., Evol. Syst. 51, 341–361 (2020).

    Google Scholar 

  • Hoffmann, A. A. & Rieseberg, L. H. Revisiting the impact of inversions in evolution: From population genetic markers to drivers of adaptive shifts and speciation? Annu. Rev. Ecol. Evol. Syst. 39, 21–42 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wellenreuther, M. & Bernatchez, L. Eco-evolutionary genomics of chromosomal inversions. Trends Ecol. Evol. 33, 427–440 (2018).

    PubMed 

    Google Scholar 

  • Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vurture, G. W. et al. GenomeScope: Fast reference-free genome profiling from short reads. Bioinformatics (Oxford, England) 33, https://doi.org/10.1093/bioinformatics/btx153 (2017).

  • Koren, S. et al. Canu: scalable and accurate long-read assembly via adaptivek-mer weighting and repeat separation. Genome Res. 27, 722–736 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Walker, B. J. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 9, e112963 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Roach, M. J., Schmidt, S. A. & Borneman, A. R. Purge Haplotigs: allelic contig reassignment for third-gen diploid genome assemblies. BMC Bioinforma. 19, 460 (2018).

    CAS 

    Google Scholar 

  • Neva, C. et al. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst. 3, 95–98 (2016).

    Google Scholar 

  • Dudchenko et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356, 92–95 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Simao, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Cheng, T. et al. Genomic adaptation to polyphagy and insecticides in a major East Asian noctuid pest. Nat. Ecol. Evol. 1, 1747–1756 (2017).

    PubMed 

    Google Scholar 

  • Wang, Y. et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 40, e49 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tarailo-Graovac, M. & Chen, N. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr. Protoc. Bioinforma. 25, unit 4.10 (2009).

    Google Scholar 

  • Lowe, T. M. & Eddy, S. R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 955–964 (1997).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lagesen, K. et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 35, 3100–3108 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cantarel, B. L. et al. MAKER: an easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Res. 18, 188–196 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Korf, I. Gene finding in novel genomes. BMC Bioinforma. 5, 59 (2004).

    Google Scholar 

  • Stanke, M. & Waack, S. Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics 19, ii215–ii225 (2003).

    PubMed 

    Google Scholar 

  • Brian, J. H. et al. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res. 31, 5654–5666 (2003).

    Google Scholar 

  • Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Huerta-Cepas, J. et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-Mapper. Mol. Biol. Evol. 34, 2115–2122 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 

  • McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Knaus, B. J. & Grünwald, N. J. vcfr: a package to manipulate and visualize variant call format data in R. Mol. Ecol. Resour. 17, 44–53 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly. (Austin) 6, 80–92 (2012).

    CAS 

    Google Scholar 

  • Zhang, C., Dong, S. S., Xu, J. Y., He, W. M. & Yang, T. L. PopLDdecay: a fast and effective tool for linkage disequilibrium decay analysis based on variant call format files. Bioinformatics 35, 1786–1788 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Gautier, M. & Vitalis, R. Inferring Population Histories Using Genome-Wide Allele Frequency Data. Mol. Biol. Evol. 30, 654–668 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Terhorst, J., Kamm, J. A. & Song, Y. S. Robust and scalable inference of population history from hundreds of unphased whole genomes. Nat. Genet. 49, 303–309 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Keightley, P. D. et al. Estimation of the spontaneous mutation rate in Heliconius melpomene. Mol. Biol. Evol. 32, 239–243 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Ahn, J. J., Yang, C. Y. & Jung, C. Model of Grapholita molesta spring emergence in pear orchards based on statistical information criteria. J. Asia-Pac. Entomol. 15, 589–593 (2012).

    Google Scholar 

  • Amat, C., Bosch-Serra, D., Avilla, J. & Escudero Colomar, L. A. Different Population Phenologies of Grapholita molesta (Busck) in Two Hosts and Two Nearby Regions in the NE of Spain. Insects 12, https://doi.org/10.3390/insects12070612 (2021).

  • Li, H. & Ralph, P. Local PCA shows how the effect of population structure differs along the genome. Genetics 211, 289–304 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Todesco, M. et al. Massive haplotypes underlie ecotypic differentiation in sunflowers. Nature 584, 602–607 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Yu, G., Wang, L.-G., Han, Y. & He, Q.-Y. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics 16, 284–287 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wei, S. J. et al. Population genomic signatures of the oriental fruit moth related to the Pleistocene climates. Dryad Digital Repository. https://doi.org/10.5061/dryad.6wwpzgmzm (2021).


  • Source: Ecology - nature.com

    3 Questions: The future of international education

    Advancing public understanding of sea-level rise