in

Population-specific association of Clock gene polymorphism with annual cycle timing in stonechats

[adace-ad id="91168"]
  • Kronfeld-Schor, N. & Dayan, T. Partitioning of time as an ecological resource. Annu. Rev. Ecol. Evol. Syst. 34, 153–181 (2003).

    Article 

    Google Scholar 

  • Tauber, E. & Kyriacou, C. P. Review: Genomic approaches for studying biological clocks. Funct. Ecol. 22, 19–29 (2008).

    Google Scholar 

  • White, E. R. & Hastings, A. Seasonality in ecology: Progress and prospects in theory. Ecol. Complex. 44, 100867 (2020).

    Article 

    Google Scholar 

  • Ko, C. H. & Takahashi, J. S. Molecular components of the mammalian circadian clock. Hum. Mol. Genet. 15, R271–R277 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Cassone, V. M. Avian circadian organization: A chorus of clocks. Front. Neuroendocrinol. 35, 76–88 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Kyriacou, C. P., Peixoto, A. A., Sandrelli, F., Costa, R. & Tauber, E. Clines in clock genes: Fine-tuning circadian rhythms to the environment. Trends Genet. 24, 124–132 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Partch, C. L., Green, C. B. & Takahashi, J. S. Molecular architecture of the mammalian circadian clock. Trends Cell Biol. 24, 90–99 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Helm, B. et al. Two sides of a coin: ecological and chronobiological perspectives of timing in the wild. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160246 (2017).

    Article 

    Google Scholar 

  • Kalmbach, D. A. et al. Genetic basis of chronotype in humans: Insights from three landmark GWAS. Sleep https://doi.org/10.1093/sleep/zsw048 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Takahashi, J. S., Shimomura, K. & Kumar, V. Searching for genes underlying behavior: Lessons from circadian rhythms. Science 322, 909–912 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • Yoshimura, T. et al. Molecular analysis of avian circadian clock genes11Published on the World Wide Web on 23 May 2000. Mol. Brain Res. 78, 207–215 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gekakis, N. et al. Role of the CLOCK Protein in the Mammalian circadian mechanism. Science 280, 1564–1569 (1998).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • Saleem, Q., Anand, A., Jain, S. & Brahmachari, S. K. The polyglutamine motif is highly conserved at the Clock locus in various organisms and is not polymorphic in humans. Hum. Genet. 109, 136–142 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Darlington, T. K. et al. Closing the circadian loop: CLOCK-induced transcription of its own inhibitors per and tim. Science 280, 1599–1603 (1998).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • King, D. P. et al. Positional cloning of the mouse circadian clock gene. Cell 89, 641–653 (1997).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Follett, B. Rhythms and photoperiodism in birds. Biological rhythms and photoperiodism in plants (1998).

  • Hazlerigg, D. G. & Wagner, G. C. Seasonal photoperiodism in vertebrates: from coincidence to amplitude. Trends Endocrinol. Metab. 17, 83–91 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gwinner, E. Circadian and circannual programmes in avian migration. J. Exp. Biol. 199, 39–48 (1996).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Stirland, J. A., Mohammad, Y. N. & Loudon, A. S. I. A mutation of the circadian timing system (tau gene) in the seasonally breeding Syrian hamster alters the reproductive response to photoperiod change. Proc. R Soc. London Ser. B Biol. Sci. 263, 345–350 (1996).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • Bradshaw, W. E. & Holzapfel, C. M. Evolution of animal photoperiodism. Annu. Rev. Ecol. Evol. Syst. 38, 1–25 (2007).

    Article 

    Google Scholar 

  • Graham, J. L., Cook, N. J., Needham, K. B., Hau, M. & Greives, T. J. Early to rise, early to breed: A role for daily rhythms in seasonal reproduction. Behav. Ecol. 28, 1266–1271 (2017).

    Article 

    Google Scholar 

  • Rittenhouse, J. L., Robart, A. R. & Watts, H. E. Variation in chronotype is associated with migratory timing in a songbird. Biol. Lett. 15, 20190453 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • O’Malley, K. G., Ford, M. J. & Hard, J. J. Clock polymorphism in Pacific salmon: Evidence for variable selection along a latitudinal gradient. Proc. R. Soc. B Biol. Sci. 277, 3703–3714 (2010).

    Article 
    CAS 

    Google Scholar 

  • O’Malley, K. G. & Banks, M. A. A latitudinal cline in the Chinook salmon (Oncorhynchus tshawytscha) Clock gene: Evidence for selection on PolyQ length variants. Proc. R. Soc. B Biol. Sci. 275, 2813–2821 (2008).

    Article 
    CAS 

    Google Scholar 

  • Peterson, M. P. et al. Variation in candidate genes CLOCK and ADCYAP1 does not consistently predict differences in migratory behavior in the songbird genus Junco. F1000Research 2, 115 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Saino, N. et al. Polymorphism at the Clock gene predicts phenology of long-distance migration in birds. Mol. Ecol. 24, 1758–1773 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Saino, N. et al. Timing of molt of barn swallows is delayed in a rare Clock genotype. PeerJ 1, e17 (2013).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Johnsen, A. et al. Avian Clock gene polymorphism: Evidence for a latitudinal cline in allele frequencies. Mol. Ecol. 16, 4867–4880 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Liedvogel, M., Szulkin, M., Knowles, S. C. L., Wood, M. & Sheldon, B. C. Phenotypic correlates of Clock gene variation in a wild blue tit population: Evidence for a role in seasonal timing of reproduction. Mol. Ecol. 18, 2444–2456 (2009).

    PubMed 
    Article 

    Google Scholar 

  • Caprioli, M. et al. Clock gene variation is associated with breeding phenology and maybe under directional selection in the migratory barn swallow. PLoS ONE 7, e35140 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • Dor, R. et al. Clock gene variation in Tachycineta swallows. Ecol. Evol. 2, 95–105 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Dor, R. et al. Low variation in the polymorphic Clock gene poly-Q region despite population genetic structure across barn swallow (Hirundo rustica) populations. PLoS ONE 6, e28843 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • O’Brien, C. et al. Geography of the circadian gene clock and photoperiodic response in western North American populations of the three-spined stickleback Gasterosteus aculeatus. J. Fish Biol. 82, 827–839 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Mueller, J. C., Pulido, F. & Kempenaers, B. Identification of a gene associated with avian migratory behaviour. Proc. R. Soc. B Biol. Sci. 278, 2848–2856 (2011).

    CAS 
    Article 

    Google Scholar 

  • Liedvogel, M. & Sheldon, B. C. Low variability and absence of phenotypic correlates of Clock gene variation in a great tit Parus major population. J. Avian Biol. 41, 543–550 (2010).

    Article 

    Google Scholar 

  • Lugo-Ramos, J. S., Delmore, K. E. & Liedvogel, M. Candidate genes for migration do not distinguish migratory and non-migratory birds. J. Comp. Physiol. A 203, 383–397 (2017).

    CAS 
    Article 

    Google Scholar 

  • Majoy, S. B. & Heideman, P. D. Tau differences between short-day responsive and short-day nonresponsive white-footed mice (Peromyscus leucopus) do not affect reproductive photoresponsiveness. J. Biol. Rhythms 15, 501–513 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • O’Brien, C. et al. Geography of the circadian gene clock and photoperiodic response in western North American populations of the threespine stickleback Gasterosteus aculeatus. J. Fish Biol. 82, 827–839 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Contina, A., Bridge, E. S., Ross, J. D., Shipley, J. R. & Kelly, J. F. Examination of clock and Adcyap1 gene variation in a neotropical migratory passerine. PLoS ONE 13, e0190859 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Herzog, E. D. Neurons and networks in daily rhythms. Nat. Rev. Neurosci. 8, 790–802 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Chahad-Ehlers, S. et al. Expanding the view of clock and cycle gene evolution in Diptera. Insect Mol. Biol. 26, 317–331 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Denlinger, D. L., Hahn, D. A., Merlin, C., Holzapfel, C. M. & Bradshaw, W. E. Keeping time without a spine: What can the insect clock teach us about seasonal adaptation?. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160257 (2017).

    Article 

    Google Scholar 

  • van Noordwijk, A. J. et al. A framework for the study of genetic variation in migratory behaviour. J .Ornithol. 147, 221–233 (2006).

    Article 

    Google Scholar 

  • Newton, I. The Migration Ecology of Birds (Academic Press, 2008).

    Google Scholar 

  • Gohli, J., Lifjeld, J. T. & Albrecht, T. Migration distance is positively associated with sex-linked genetic diversity in passerine birds. Ethol. Ecol. Evol. 28, 42–52 (2016).

    Article 

    Google Scholar 

  • Bazzi, G. et al. Clock gene polymorphism, migratory behaviour and geographic distribution: A comparative study of trans-Saharan migratory birds. Mol. Ecol. 25, 6077–6091 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Doren, B. M. V., Liedvogel, M. & Helm, B. Programmed and flexible: Long-term Zugunruhe data highlight the many axes of variation in avian migratory behaviour. J. Avian Biol. 48, 155–172 (2017).

    Article 

    Google Scholar 

  • Helm, B., Gwinner, E. & Trost, L. Flexible seasonal timing and migratory behavior: Results from stonechat breeding programs. Ann. N. Y. Acad. Sci. 1046, 216–227 (2005).

    PubMed 
    Article 
    ADS 

    Google Scholar 

  • Helm, B. & Gwinner, E. Migratory restlessness in an equatorial nonmigratory bird. PLoS Biol. 4, e110 (2006).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Helm, B. Geographically distinct reproductive schedules in a changing world: Costly implications in captive Stonechats. Integr Comp Biol 49, 563–579 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Dhondt, A. A. Variations in the number of overwintering stonechats possibly caused by natural selection. Ringing Migr. 4, 155–158 (1983).

    Article 

    Google Scholar 

  • Brown, C. R. & Brown, M. B. Weather-mediated natural selection on arrival time in cliff swallows (Petrochelidon pyrrhonota). Behav. Ecol. Sociobiol. 47, 339–345 (2000).

    Article 

    Google Scholar 

  • GOUDET, J. FSTAT, a program to estimate and test gene diversities and fixation indices, version 2.9.3. http://www2.unil.ch/popgen/softwares/fstat.htm (2001).

  • Van Doren, B. M. et al. Correlated patterns of genetic diversity and differentiation across an avian family. Mol. Ecol. 26, 3982–3997 (2017).

    PubMed 
    Article 

    Google Scholar 

  • Illera, J. C., Richardson, D. S., Helm, B., Atienza, J. C. & Emerson, B. C. Phylogenetic relationships, biogeography and speciation in the avian genus Saxicola. Mol. Phylogenet. Evol. 48, 1145–1154 (2008).

    PubMed 
    Article 

    Google Scholar 

  • Illera, J. C. & Díaz, M. Reproduction in an endemic bird of a semiarid island: A food-mediated process. J. Avian Biol. 37, 447–456 (2006).

    Article 

    Google Scholar 

  • Illera, J. C. & Díaz, M. Site fidelity in the Canary Islands stonechat Saxicola dacotiae in relation to spatial and temporal patterns of habitat suitability. Acta Oecol. 34, 1–8 (2008).

    Article 
    ADS 

    Google Scholar 

  • Gwinner, E. & Dittami, J. Endogenous reproductive rhythms in a tropical bird. Science 249, 906–908 (1990).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • Dittami, J. & Gwinner, E. Annual cycles in the African stonechat Saxicola torquata axillaris and their relationship to environmental factors. J. Zool. 207, 357–370 (1985).

    Article 

    Google Scholar 

  • Gwinner, E. Circannual rhythms in tropical and temperate-zone stonechats: A comparison of properties under constant conditions. Ökologie der Vögel 13, 5–14 (1991).

    Google Scholar 

  • Gwinner, E. Circannual Rhythms: Endogenous Annual Clocks in the Organization of Seasonal Processes (Springer, 2012).

    Google Scholar 

  • Helm, B., Fiedler, W. & Callion, J. Movements of European stonechats Saxicola torquata according to ringing recoveries. ARDEA-WAGENINGEN- 94, 33 (2006).

    Google Scholar 

  • Opaev, A., Red’kin, Y., Kalinin, E. & Golovina, M. Species limits in Northern Eurasian taxa of the common stonechats, Saxicola torquatus complex (Aves: Passeriformes, Muscicapidae). Vertebr.ate Zool. 68, 199 (2018).

    Google Scholar 

  • Gwinner, E. & Czeschlik, D. On the significance of spring migratory restlessness in caged birds. Oikos 30, 364–372 (1978).

    Article 

    Google Scholar 

  • Krist, M., Munclinger, P., Briedis, M. & Adamík, P. The genetic regulation of avian migration timing: combining candidate genes and quantitative genetic approaches in a long-distance migrant. Oecologia https://doi.org/10.1007/s00442-021-04930-x (2021).

    Article 
    PubMed 

    Google Scholar 

  • Berthold, P. & Pulido, F. Heritability of migratory activity in a natural bird population. Proc. R. Soc. London Ser. B Biol. Sci. 257, 311–315 (1994).

    Article 
    ADS 

    Google Scholar 

  • Pulido, F. & Berthold, P. Current selection for lower migratory activity will drive the evolution of residency in a migratory bird population. Proc. Natl. Acad. Sci. 107, 7341–7346 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • Liedvogel, M. & Lundberg, M. The Genetics of Migration. In Animal Movement Across Scales (eds Hansson, L.-A. & Åkesson, S.) 219–231 (Oxford University Press, 2014). https://doi.org/10.1093/acprof:oso/9780199677184.003.0012.

    Chapter 

    Google Scholar 

  • Åkesson, S. & Helm, B. Endogenous programs and flexibility in bird migration. Front. Ecol. Evol. 8, 78 (2020).

    Article 

    Google Scholar 

  • Stevenson, T. J. & Kumar, V. Neural control of daily and seasonal timing of songbird migration. J. Comp. Physiol. A 203, 399–409 (2017).

    Article 

    Google Scholar 

  • Verhagen, I. et al. Genetic and phenotypic responses to genomic selection for timing of breeding in a wild songbird. Funct. Ecol. 33, 1708–1721 (2019).

    Article 

    Google Scholar 

  • Helm, B. & Gwinner, E. Timing of Postjuvenal molt in African (Saxicola Torquata Axillaris) and European (Saxicola Torquata Rubicola) stonechats: Effects of genetic and environmental factors. Auk 116, 589–603 (1999).

    Article 

    Google Scholar 

  • Zink, R. M., Pavlova, A., Drovetski, S., Wink, M. & Rohwer, S. Taxonomic status and evolutionary history of the Saxicola torquata complex. Mol. Phylogenet. Evol. 52, 769–773 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Flinks, H. & Pfeifer, F. Brutzeit, Gelegegröße und Bruterfolg beim Schwarzkehlchen (Saxicola torquata). Charadrius 23, 128–140 (1987).

    Google Scholar 

  • Urquhart, E. Stonechats (Christopher Helm, 2002).

    Google Scholar 

  • Glutz von Blotzheim, U. Bauer Handbuch der Vögel Mitteleuropas KM: Bd. 11. Aula, Wiesbaden (1988).

  • Yamaura, Y. et al. Tracking the Stejneger’s stonechat Saxicola stejnegeri along the East Asian-Australian Flyway from Japan via China to southeast Asia. J. Avian Biol. 48, 197–202 (2017).

    Article 

    Google Scholar 

  • Gwinner, E., Neusser, V., Engl, D., Schmidl, D. & Bals, L. Haltung, Zucht und Eiaufzucht afrikanischer und europäischer Schwarzkehlchen Saxicola torquata. Gefiederte Welt 111, 118–120 (1987).

    Google Scholar 

  • Flinks, H., Helm, B. & Rothery, P. Plasticity of moult and breeding schedules in migratory European Stonechats Saxicola rubicola. Ibis 150, 687–697 (2008).

    Article 

    Google Scholar 

  • Humphrey, P. S. & Parkes, K. C. An approach to the study of molts and plumages. Auk 76, 1–31 (1959).

    Article 

    Google Scholar 

  • Berthold, P. Bird Migration: A General Survey (Oxford University Press, 2001).

    Google Scholar 

  • RStudio | Open source & professional software for data science teams. https://rstudio.com/.

  • R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2013).

  • Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. http://arxiv.org/abs/1406.5823 (2014).

  • Lüdecke, D. & Lüdecke, M. D. Package ‘sjPlot’. (2015).

  • del Hoyo, J., Elliott, A., Sargatal, J., Christie, D. A. & de Juana, E. Handbook of the Birds of the World Alive (Lynx Edicions, 2018).

    Google Scholar 


  • Source: Ecology - nature.com

    MIT Climate “Plug-In” highlights first year of progress on MIT’s climate plan

    A collaborative agenda for archaeology and fire science