in

Population structure of blackfin tuna (Thunnus atlanticus) in the western Atlantic Ocean inferred from microsatellite loci

  • Carvalho, G. R. & Hauser, L. Molecular genetics and the stock concept in fisheries. In Molecular Genetics in Fisheries (eds Carvalho, G. R. & Pitcher, T. J.) 55–79 (Springer Netherlands, 1995). https://doi.org/10.1007/978-94-011-1218-5_3.

    Chapter 

    Google Scholar 

  • Avise, J. C. Conservation genetics in the marine realm. J. Hered. 89, 377–382 (1998).

    Article 

    Google Scholar 

  • Waples, R. S. Separating the wheat from the chaff: Patterns of genetic differentiation in high gene flow species. J. Hered. 89, 438–450 (1998).

    Article 

    Google Scholar 

  • Pecoraro, C. et al. The population genomics of yellowfin tuna (Thunnus albacares) at global geographic scale challenges current stock delineation. Sci. Rep. 8, 13890 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Nikolic, N. et al. Connectivity and population structure of albacore tuna across southeast Atlantic and southwest Indian Oceans inferred from multidisciplinary methodology. Sci. Rep. 10, 15657 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Anderson, G., Lal, M., Hampton, J., Smith, N. & Rico, C. Close kin proximity in yellowfin tuna (Thunnus albacares) as a driver of population genetic structure in the tropical western and central Pacific Ocean. Front. Mar. Sci. 6, 341 (2019).

    Article 

    Google Scholar 

  • Collette, B. B. & Nauen, C. E. Scombrids of the World: An Annotated and Illustrated Catalogue of Tunas, Mackerels, Bonitos, and Related Species Known to date v.2 (FAO, 1983).

    Google Scholar 

  • Majkowski, J., Arrizabalaga, H. & Carocci, F. C1. Tuna and Tuna-like Species. Review of the state of World Fisheries Resources (FAO, 2005).

  • Mahon, R. Fisheries and research for tunas and tuna-like species in the Western Central Atlantic: implications of the agreement for the implementation of the provisions of the United Nations Convention on the Law of the Sea of the 10 December 1982 relating to the conservation and management of straddling fish stocks and highly migratory fish stocks. (FAO Fisheries Technical Paper, 1996).

  • Doray, M., Stéquert, B. & Taquet, M. Age and growth of blackfin tuna (Thunnus atlanticus ) caught under moored fish aggregating devices, around Martinique Island. Aquat. Living Resour. 17, 13–18 (2004).

    Article 

    Google Scholar 

  • Arocha, F., Barrios, A. & Marcano, J. Blackfin tuna (Thunnus atlanticus) in the Venezuelan fisheries. Collect. Vol. Sci. Pap ICCAT 68(3), 1253–1260 (2012).

    Google Scholar 

  • Mathieu, H., Pau, C. & Reynal, L. Chapter 2.1.10.7 THON A NAGEOIRES NOIRES. ICCAT ICCAT Manual. International Commission for the Conservation of Atlantic Tuna. 15 (2013).

  • Maghan, W. B. & Rivas, L. R. The blackfin tuna (Thunnus atlanticus) as an underutilized fishery resource in the tropical western Atlantic Ocean. FAO Fish. Rep. 71(2), 163–172 (1971).

    Google Scholar 

  • De Sylva, D. P., Rathjen, W. F. & Higman, J. B. Fisheries development for underutilized Atlantic tunas: Blackfin and little tunny. NOAA Technical Memorandum NMFS-SEFC-191 (1987).

  • Richardson, D. E., Llopiz, J. K., Guigand, C. M. & Cowen, R. K. Larval assemblages of large and medium-sized pelagic species in the Straits of Florida. Prog. Oceanogr. 86, 8–20 (2010).

    ADS 
    Article 

    Google Scholar 

  • Freire, K. M. F., Lessa, R. & Lins-Oliveira, J. E. Fishery and biology of blackfin tuna Thunnus atlanticus off northeastern Brazil. Gulf Caribb. Res. 17, 15–24 (2005).

    Article 

    Google Scholar 

  • Vieira, K. R., Oliveira, J. E. L. & Barbalho, M. C. Aspects of the dynamic population of blackfin tuna (Thunnus atlanticus-Lesson, 1831) caught in the Northeast Brazil. Collect. Vol. Sci. Pap ICCAT 58(5), 1623–1628 (2005).

    Google Scholar 

  • FJ Mather, I. I. I. Tunas (genus Thunnus) of the western North Atlantic. Part III. Distribution and behavior of Thunnus species. World Sci. Meeting Biol. Tunas Exper. Pap. Vol. 8, 1–23 (1962)

  • Cornic, M. & Rooker, J. R. Influence of oceanographic conditions on the distribution and abundance of blackfin tuna (Thunnus atlanticus) larvae in the Gulf of Mexico. Fish. Res 201, 1–10 (2018).

    Article 

    Google Scholar 

  • Block, B. A. et al. Electronic tagging and population structure of Atlantic bluefin tuna. Nature 434, 1121–1127 (2005).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Luckhurst, B. E., Trott, T. & Manuel, S. Landings, seasonality, catch per unit effort, and tag-recapture results of yellowfin tuna and blackfin tuna at Bermuda. Am. Fish. Soc. Symp. 25, 225–234 (2001).

    Google Scholar 

  • Singh-Renton, S. & Renton, J. CFRAMP’s large pelagic fish tagging program. Gulf Caribb. Res. Vol 19, (2007).

  • Cermeño, P. et al. Electronic tagging of Atlantic bluefin tuna (Thunnus thynnus, L.) reveals habitat use and behaviors in the Mediterranean Sea. PLoS ONE 10, e0116638 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Begg, G. A., Friedland, K. D. & Pearce, J. B. Stock identification and its role in stock assessment and fisheries management: An overview. Fish. Res 43, 1–8 (1999).

    Article 

    Google Scholar 

  • Saxton, B. Historical demography and genetic population structure of theBlackfin tuna (Thunnus atlanticus) from the Northwest Atlantic Ocean and the Gulf of Mexico. Texas A&M University (2009).

  • Antoni, L., Luque, P. L., Naghshpour, K., Reynal, L. & Saillant, E. A. Development and characterization of microsatellite markers for blackfin tuna (Thunnus atlanticus) with the use of Illumina paired-end sequencing. Fish. Bull. 112, 322–325 (2014).

    Article 

    Google Scholar 

  • Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358 (1984).

    CAS 
    PubMed 

    Google Scholar 

  • Goudet, J. FSTAT (Version 1.2): A computer program to calculate F-statistics. J. Hered 86, 485–486 (1995).

    Article 

    Google Scholar 

  • Rousset, F. Genepop’007: A complete re-implementation of the genepop software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106 (2008).

    PubMed 
    Article 

    Google Scholar 

  • Guo, S. W. & Thompson, E. A. Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics 48, 361–372 (1992).

    CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar 

  • Van Oosterhout, C., Huthinson, W. F., Wills, D. P. M. & Shipley, P. Micro-checker: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538 (2004).

    Article 
    CAS 

    Google Scholar 

  • Excoffier, L., Smouse, P. E. & Quattro, J. M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 131, 479–491 (1992).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B (Methodol.) 57, 289–300 (1995).

    MathSciNet 
    MATH 

    Google Scholar 

  • Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Falush, D., Stephens, M. & Pritchard, J. K. Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics 164, 1567–1587 (2003).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hubisz, M. J., Falush, D., Stephens, M. & Pritchard, J. K. Inferring weak population structure with the assistance of sample group information. Mol. Ecol. Resour. 9, 1322–1332 (2009).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet. 11, 94 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Dupanloup, I., Schneider, S. & Excoffier, L. A simulated annealing approach to define the genetic structure of populations. Mol. Ecol. 11, 2571–2581 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Peakall, R. & Smouse, P. E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28, 2537–2539 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Smouse, P. E. & Peakall, R. Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure. Heredity 82(Pt 5), 561–573 (1999).

    PubMed 
    Article 

    Google Scholar 

  • Rousset, F. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145, 1219–1228 (1997).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bezerra, N. P. A. et al. Reproduction of Blackfin tuna Thunnus atlanticus (Perciformes: Scombridae) in Saint Peter and Saint Paul Archipelago, Equatorial Atlantic, Brazil. Rev. Biol. Trop. 61, 1327–1339 (2013).

    PubMed 
    Article 

    Google Scholar 

  • Fitzpatrick, B. M. Power and sample size for nested analysis of molecular variance. Mol. Ecol. 18, 3961–3966 (2009).

    PubMed 
    Article 

    Google Scholar 

  • Ely, B. et al. Consequences of the historical demography on the global population structure of two highly migratory cosmopolitan marine fishes: The yellowfin tuna (Thunnus albacares) and the skipjack tuna (Katsuwonus pelamis). BMC Evol. Biol. 5, 19 (2005).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Alvarado Bremer, J. R., Viñas, J., Mejuto, J., Ely, B. & Pla, C. Comparative phylogeography of Atlantic bluefin tuna and swordfish: The combined effects of vicariance, secondary contact, introgression, and population expansion on the regional phylogenies of two highly migratory pelagic fishes. Mol. Phylogenet. Evol. 36, 169–187 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hedgecock, D., Barber, P. & Edmands, S. Genetic approaches to measuring connectivity. Oceanography 20, 70–79 (2007).

    Article 

    Google Scholar 

  • Pruett, C. L., Saillant, E. & Gold, J. R. Historical population demography of red snapper (Lutjanus campechanus) from the northern Gulf of Mexico based on analysis of sequences of mitochondrial DNA. Mar. Biol. 147, 593–602 (2005).

    CAS 
    Article 

    Google Scholar 

  • Saillant, E., Bradfield, S. C. & Gold, J. R. Genetic variation and spatial autocorrelation among young-of-the-year red snapper (Lutjanus campechanus) in the northern Gulf of Mexico. ICES J. Mar. Sci 67, 1240–1250 (2010).

    Article 

    Google Scholar 

  • Robledo-Arnuncio, J. J. & Rousset, F. Isolation by distance in a continuous population under stochastic demographic fluctuations. J. Evol. Biol. 23, 53–71 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Rocha, L. A., Craig, M. T. & Bowen, B. W. Phylogeography and the conservation of coral reef fishes. Coral Reefs 26, 501–512 (2007).

    ADS 
    Article 

    Google Scholar 

  • Vasconcellos, A. V., Vianna, P., Paiva, P. C., Schama, R. & Solé-Cava, A. Genetic and morphometric differences between yellowtail snapper (Ocyurus chrysurus, Lutjanidae) populations of the tropical West Atlantic. Genet. Mol. Biol. 31, 308–316 (2008).

    CAS 
    Article 

    Google Scholar 

  • Vieira, K. R., Oliveira, J. E. L. & Barbalho, M. C. Reproductive characteristics of blackfin tuna Thunnus atlanticus (Lesson, 1831), in northeast Brazil. Collect. Vol. Sci. Pap ICCAT 58, 1629–1634 (2005).

    Google Scholar 

  • Nielsen, E. E. et al. Genomic signatures of local directional selection in a high gene flow marine organism; the Atlantic cod (Gadus morhua). BMC Evol. Biol. 9, 276 (2009).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Lamichhaney, S. et al. Population-scale sequencing reveals genetic differentiation due to local adaptation in Atlantic herring. Proc. Natl. Acad. Sci. USA 109, 19345–19350 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Latch, E. K., Dharmarajan, G., Glaubitz, J. C. & Rhodes, O. E. Relative performance of Bayesian clustering software for inferring population substructure and individual assignment at low levels of population differentiation. Conserv. Genet. 7, 295–302 (2006).

    Article 

    Google Scholar 

  • Brophy, D., Rodríguez-Ezpeleta, N., Fraile, I. & Arrizabalaga, H. Combining genetic markers with stable isotopes in otoliths reveals complexity in the stock structure of Atlantic bluefin tuna (Thunnus thynnus). Sci. Rep. 10, 14675 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Could used beer yeast be the solution to heavy metal contamination in water?

    Climate warming threatens soil microbial diversity