in

Potential negative effects of ocean afforestation on offshore ecosystems

  • Bach, L. T. et al. Testing the climate intervention potential of ocean afforestation using the Great Atlantic Sargassum Belt. Nat. Commun. 12, 2556 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • N‘Yeurt, A. D. R., Chynoweth, D. P., Capron, M. E., Stewart, J. R. & Hasan, M. A. Negative carbon via ocean afforestation. Process Saf. Environ. Prot. 90, 467–474 (2012).

    Article 
    CAS 

    Google Scholar 

  • Duarte, C. M., Bruhn, A. & Krause-Jensen, D. A seaweed aquaculture imperative to meet global sustainability targets. Nat. Sustain. 5, 185–193 (2022).

    Article 

    Google Scholar 

  • Woody, T. Seaweed ‘forests’ can help fight climate change. National Geographic https://www.nationalgeographic.co.uk/environment-and-conservation/2019/08/seaweed-forests-can-help-fight-climate-change (2019).

  • Godin, M. The ocean farmers trying to save the world with seaweed. Time https://time.com/5848994/seaweed-climate-change-solution/ (2020).

  • Marshall, M. Kelp is coming: how seaweed could prevent catastrophic climate change. New Scientist https://www.newscientist.com/article/mg24632821-100-kelp-is-coming-how-seaweed-could-prevent-catastrophic-climate-change/ (2020).

  • Bever, F. ‘Run the oil industry in reverse’: fighting climate change by farming kelp. NPR https://www.npr.org/2021/03/01/970670565/run-the-oil-industry-in-reverse-fighting-climate-change-by-farming-kelp (2021).

  • Running Tide. https://www.runningtide.com/ (2022).

  • IPCC: Summary for Policymakers. In Global Warming of 1.5°C (eds Masson-Delmotte, V. et al.) (WMO, 2018).

  • IPCC: Summary for Policymakers. In Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press) (in the press).

  • GESAMP. High Level Review of a Wide Range of Proposed Marine Geoengineering Techniques (eds Boyd, P. W. & Vivian, C. M. G.) GESAMP Working Group 41 (International Maritime Organization, 2019).

  • Boyd, P. & Vivian, C. Should we fertilize oceans or seed clouds? No one knows. Nature 570, 155–157 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Law, C. S. Predicting and monitoring the impact of large-scale iron fertilisation on marine trace gas emissions. Mar. Ecol. Prog. Ser. 364, 283–288 (2008).

    CAS 
    Article 

    Google Scholar 

  • Russell, L. M. et al. Ecosystem impacts of geoengineering: a review for developing a science plan. Ambio 41, 350–369 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Costello, C., Fries, L. & Gaines, S. Transformational opportunities in ocean-based food & nutrition. Zenodo https://zenodo.org/record/4646319#.YkBFxhPMLAw (2021).

  • Jouffray, J.-B., Blasiak, R., Norström, A. V., Österblom, H. & Nyström, M. The blue acceleration: the trajectory of human expansion into the ocean. One Earth 2, 43–54 (2020).

    Article 

    Google Scholar 

  • Cullen, J. J. & Boyd, P. W. Predicting and verifying the intended and uninterested consequence of large-scale iron fertilization. Mar. Ecol. Prog. Ser. 364, 295–301 (2008).

    CAS 
    Article 

    Google Scholar 

  • Bach, L. T., Gill, S. J., Rickaby, R. E. M., Gore, S. & Renforth, P. CO2 removal with enhanced weathering and ocean alkalinity enhancement: potential risks and co-benefits for marine pelagic ecosystems. Front. Clim. https://doi.org/10.3389/fclim.2019.00007 (2019).

  • Moore, C. M. et al. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6, 701–710 (2013).

    CAS 
    Article 

    Google Scholar 

  • Suchet, P. A., Probst, J.-L. & Ludwig, L. Worldwide distribution of continental rock lithology: implications for the atmospheric/soil CO2 uptake by continental weathering and alkalinity river transport to the oceans. Glob. Biogeochem. Cycles 17, 1038 (2003).

    Google Scholar 

  • Macreadie, P. I. et al. The future of blue carbon science. Nat. Commun. 10, 3998 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Fraser, C. I., Nikula, R. & Waters, J. M. Oceanic rafting by a coastal community. Proc. Biol. Sci. 278, 649–655 (2011).

    PubMed 

    Google Scholar 

  • Fraser, C. I., Davies, I. D., Bryant, D. & Waters, J. M. How disturbance and dispersal influence intraspecific structure. J. Ecol. 106, 1298–1306 (2018).

    Article 

    Google Scholar 

  • Fraser, C. I. et al. Antarctica’s ecological isolation will be broken by storm-driven dispersal and warming. Nat. Clim. Change 8, 704–708 (2018).

    Article 

    Google Scholar 

  • Chung, I. K., Beardall, J., Mehta, S., Sahoo, D. & Stojkovic, S. Using marine macroalgae for carbon sequestration: a critical appraisal. J. Appl. Phycol. 23, 877–886 (2011).

    CAS 
    Article 

    Google Scholar 

  • Krause-Jensen, D. & Duarte, C. M. Substantial role of macroalgae in marine carbon sequestration. Nat. Geosci. 9, 737–742 (2016).

    CAS 
    Article 

    Google Scholar 

  • Hurd, C. L. et al. Forensic carbon accounting: assessing the role of seaweeds for carbon sequestration. J. Phycol., https://doi.org/10.1111/jpy.13249 (2022).

  • Stripe commits $8M to six new carbon removal companies. Stripe https://stripe.com/newsroom/news/spring-21-carbon-removal-purchases (2021).

  • General application. Stripe https://github.com/stripe/carbon-removal-source-materials/blob/master/Project%20Applications/Spring2021/Running%20Tide%20-%20Stripe%20Spring21%20CDR%20Purchase%20Application.pdf (2021).

  • Coston-Clements, L. Utilization of the Sargassum Habitat by Marine Invertebrates and Vertebrates: a Review. NOAA Technical Memorandum NMFS-SEFSC, 296 (U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Southeast Fisheries Science Center & Beaufort Laboratory, 1991).

  • Egan, S. et al. The seaweed holobiont: understanding seaweed–bacteria interactions. FEMS Microbiol. Rev. 37, 462–476 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Califano, G., Kwantes, M., Abreu, M. H., Costa, R. & Wichard, T. Cultivating the macroalgal holobiont: effects of integrated multi-trophic aquaculture on the microbiome of Ulva rigida (Chlorophyta)Front. Mar. Sci. 7, 52 (2020).

    Article 

    Google Scholar 

  • Selvarajan, R. et al. Distribution, interaction and functional profiles of epiphytic bacterial communities from the rocky intertidal seaweeds, South Africa. Sci. Rep. 9, 19835 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bonthond, G. et al. The role of host promiscuity in the invasion process of a seaweed holobiont. ISME J. 15, 1668–1679 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wang, M. et al. The great Atlantic Sargassum belt. Science 365, 83–87 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Johns, E. M. et al. The establishment of a pelagic Sargassum population in the tropical Atlantic: biological consequences of a basin-scale long distance dispersal event. Prog. Oceanogr. 182, 102269 (2020).

    Article 

    Google Scholar 

  • Martiny, A. C. et al. Biogeochemical controls of surface ocean phosphate. Sci. Adv. 5, eaax0341 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Zehr, J. P. & Capone, D. G. Changing perspectives in marine nitrogen fixation. Science 368, eaay9514 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Harrison, P. J., Druehl, L. D., Lloyd, K. E. & Thompson, P. A. Nitrogen uptake kinetics in three year-classes of Laminaria groenlandica (Laminariales: Phaeophyta). Mar. Biol. 93, 29–35 (1986).

    CAS 
    Article 

    Google Scholar 

  • Hurd, C. L. & Dring, M. L. Phosphate uptake by intertidal algae in relation to zonation and season. Mar. Biol. 107, 281–289 (1990).

    Article 

    Google Scholar 

  • Ohtake, M. et al. Growth and nutrient uptake characteristics of Sargassum macrocarpum cultivated with phosphorus-replete wastewater. Aquat. Bot. 163, 103208 (2020).

    Article 

    Google Scholar 

  • MacFarlane, J. J. & Raven, J. A. C, N and P nutrition of Lemanea mamillosa Kütz. (Batrachospermales, Rhodophyta) in the Dighty Burn, Angus, U.K. Plant Cell Environ. 13, 1–13 (1990).

    CAS 
    Article 

    Google Scholar 

  • Wu, J., Keller, D. P. & Oschlies, A. Carbon dioxide removal via macroalgae open-ocean mariculture and sinking: an Earth system modeling study. Preprint at Earth System Dynamics Discuss https://doi.org/10.5194/esd-2021-104 (2022).

  • Kwiatkowski, L. et al. Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. Biogeosciences 17, 3439–3470 (2020).

    CAS 
    Article 

    Google Scholar 

  • Chapman, A. R. O. & Craigie, J. S. Seasonal growth in Laminaria longicruris: relations with dissolved inorganic nutrients and internal reserves of nitrogen. Mar. Biol. 40, 197–205 (1977).

    CAS 
    Article 

    Google Scholar 

  • Dutkiewicz, S., Scott, J. R. & Follows, M. J. Winners and losers: ecological and biogeochemical changes in a warming ocean. Glob. Biogeochem. Cycles 27, 463–477 (2013).

    CAS 
    Article 

    Google Scholar 

  • Thomas, M. K. et al. Temperature–nutrient interactions exacerbate sensitivity to warming in phytoplankton. Glob. Change Biol. 2, 3269–3280 (2017).

    Article 

    Google Scholar 

  • Lapointe, B. E. et al. Nutrient content and stoichiometry of pelagic Sargassum reflects increasing nitrogen availability in the Atlantic Basin. Nat. Commun. 12, 3060 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Fan, W. et al. A sea trial of enhancing carbon removal from Chinese coastal waters by stimulating seaweed cultivation through artificial upwelling. Appl. Ocean Res. 101, 102260 (2020).

    Article 

    Google Scholar 

  • Karl, D. M. & Letelier, R. M. Nitrogen fixation-enhanced carbon sequestration in low nitrate, low chlorophyll seascapes. Mar. Ecol. Prog. Ser. 364, 257–268 (2008).

    CAS 
    Article 

    Google Scholar 

  • Oschlies, A. S., Pahlow, M., Yool, A. & Matear, R. Climate engineering by artificial ocean upwelling: channelling the sorcerer’s apprentice. Geophys. Res. Lett. 37, L04701 (2010).

    Article 
    CAS 

    Google Scholar 

  • Thornton, D. C. O. Dissolved organic matter (DOM) release by phytoplankton in the contemporary and future ocean. Eur. J. Phycol. 49, 20–46 (2014).

    CAS 
    Article 

    Google Scholar 

  • Morán, X. A. G., Sebastián, M., Pedrós-Alió, C. & Estrada, M. Response of Southern Ocean phytoplankton and bacterioplankton production to short-term experimental warming. Limnol. Oceanogr. 51, 1791–1800 (2006).

    Article 

    Google Scholar 

  • Marañón, E., Cermeño, P., Fernández, E., Rodríguez, J. & Zabala, L. Significance and mechanisms of photosynthetic production of dissolved organic carbon in a coastal eutrophic ecosystem. Limnol. Oceanogr. 49, 1652–1666 (2004).

    Article 

    Google Scholar 

  • Paine, E. R., Schmid, M., Boyd, P. W., Diaz-Pulido, G. & Hurd, C. L. Rate and fate of dissolved organic carbon release by seaweeds: a missing link in the coastal ocean carbon cycle. J. Phycol. 57, 1375–1391 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Brylinsky, M. Release of dissolved organic matter by some marine macrophytes. Mar. Biol. 39, 213–220 (1977).

    Article 

    Google Scholar 

  • Sieburth, J. M. Studies on algal substances in the sea. III. The production of extracellular organic matter by littoral marine algae. J. Exp. Mar. Biol. Ecol. 3, 290–309 (1969).

    CAS 
    Article 

    Google Scholar 

  • Hanson, R. B. Pelagic Sargassum community metabolism: carbon and nitrogen. J. Exp. Mar. Biol. Ecol. 29, 107–118 (1977).

    CAS 
    Article 

    Google Scholar 

  • Zark, M., Riebesell, U. & Dittmar, T. Effects of ocean acidification on marine dissolved organic matter are not detectable over the succession of phytoplankton blooms. Sci. Adv. 1, e1500531 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Zhang, Y., Liu, X., Wang, M. & Qin, B. Compositional differences of chromophoric dissolved organic matter derived from phytoplankton and macrophytes. Org. Geochem. 55, 26–37 (2013).

    Article 
    CAS 

    Google Scholar 

  • Hulatt, C. J., Thomas, D. N., Bowers, D. G., Norman, L. & Zhang, C. Exudation and decomposition of chromophoric dissolved organic matter (CDOM) from some temperate macroalgae. Estuar. Coast. Shelf Sci. 84, 147–153 (2009).

    CAS 
    Article 

    Google Scholar 

  • Liu, S., Trevathan-Tackett, S. M., Ewers Lewis, C. J., Huang, X. & Macreadie, P. I. Macroalgal blooms trigger the breakdown of seagrass blue carbon. Environ. Sci. Technol. 54, 14750–14760 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Vieira, H. C. et al. Ocean warming may enhance biochemical alterations induced by an invasive seaweed exudate in the mussel Mytilus galloprovincialis. Toxics 9, 121 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Brooks, S. D. & Thornton, D. C. O. Marine aerosols and clouds. Ann. Rev. Mar. Sci. 10, 289–313 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Lewis, M. R., Carr, M.-E., Feldman, G. C., Esaias, W. & McClain, C. Influence of penetrating solar radiation on the heat budget of the equatorial Pacific Ocean. Nature 347, 543–545 (1990).

    Article 

    Google Scholar 

  • Morel, A. Optical modeling of the upper ocean in relation to its biogenous matter content (case-I waters). J. Geophys. Res. 93, 10749–10768 (1988).

    Article 

    Google Scholar 

  • Park, J.-Y., Kug, J.-S., Bader, J., Rolph, R. & Kwon, M. Amplified Arctic warming by phytoplankton under greenhouse warming. Proc. Natl Acad. Sci. USA 112, 5921–5926 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Denaro, G. et al. Dynamics of two picophytoplankton groups in Mediterranean Sea: analysis of the deep chlorophyll maximum by a stochastic advection-reaction-diffusion model. PLoS ONE 8, e66765 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kavanaugh, M. T. et al. Experimental assessment of the effects of shade on an intertidal kelp: do phytoplankton blooms inhibit growth of open-coast macroalgae? Limnol. Oceanogr. 54, 276–288 (2009).

    Article 

    Google Scholar 

  • Omand, M. M., Steinberg, D. K. & Stamies, K. Cloud shadows drive vertical migrations of deep-dwelling marine life. Proc. Natl Acad. Sci. USA 118, e2022977118 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bach, L. T. & Boyd, P. W. Seeking natural analogs to fast-forward the assessment of marine CO2 removal. Proc. Natl Acad. Sci. USA 118, e2106147118 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • van Donk, E. & van de Bund, W. J. Impact of submerged macrophytes including charophytes on phyto- and zooplankton communities: allelopathy versus other mechanisms. Aquat. Bot. 72, 261–274 (2002).

    Article 

    Google Scholar 

  • Jin, Q., Dong, S. & Wang, C. Allelopathic growth inhibition of Prorocentrum micans (Dinophyta) by Ulva pertusa and Ulva linza (Chlorophyta) in laboratory cultures. Eur. J. Phycol. 40, 31–37 (2005).

    Article 

    Google Scholar 

  • Wallace, R. B. & Gobler, C. J.Factors controlling blooms of microalgae and macroalgae (Ulva rigida) in a eutrophic, urban estuary: Jamaica Bay, NY, USA. Estuaries Coast 38, 519–533 (2015).

    CAS 
    Article 

    Google Scholar 

  • Tang, Y. Z. & Gobler, C. J. The green macroalga, Ulva lactuca, inhibits the growth of seven common harmful algal bloom species via allelopathy. Harmful Algae 10, 480–488 (2011).

    Article 

    Google Scholar 

  • Cagle, S. E., Roelke, D. L. & Muhl, R. W. Allelopathy and micropredation paradigms reconcile with system stoichiometry. Ecosphere 12, e03372 (2021).

    Article 

    Google Scholar 

  • Hein, M., Pedersen, M. F. & Sand-Jensen, K. Size-dependent nitrogen uptake in micro- and macroalgae. Mar. Ecol. Prog. Ser. 118, 247–253 (1995).

    Article 

    Google Scholar 

  • Stevens, C. L., Hurd, C. L. & Smith, M. J. Water motion relative to subtidal kelp fronds. Limnol. Oceanogr. 46, 668–678 (2001).

    Article 

    Google Scholar 

  • Raut, Y., Morando, M. & Capone, D. G. Diazotrophic macroalgal associations with living and decomposing Sargassum. Front. Microbiol. 9, 3127 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Villareal, T. A., Woods, S., Moore, J. K. & CulverRymsza, K. Vertical migration of Rhizosolenia mats and their significance to NO3 fluxes in the central North Pacific gyre. J. Plankton Res. 18, 1103–1121 (1996).

    Article 

    Google Scholar 

  • Gachon, C. M. M., Sime-Ngando, T., Strittmatter, M., Chambouvet, A. & Kim, G. H. Algal diseases: spotlight on a black box. Trends Plant Sci. 15, 633–640 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Sánchez-Baracaldo, P., Bianchini, G., Wilson, J. D. & Knoll, A. H. Cyanobacteria and biogeochemical cycles through Earth history. Trends Microbiol. 30, 143–157 (2022).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Thiel, M. & Gutow, L. in Oceanography and Marine Biology: an Annual Review Vol. 43 (eds Gibson, R. et al.) 279–418 (Taylor & Francis, 2005).

  • Rech, S., Borrell Pichs, Y. J. & García-Vazquez, E. Anthropogenic marine litter composition in coastal areas may be a predictor of potentially invasive rafting fauna. PLoS ONE 13, e0191859 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Food and Agriculture Organization (FAO) of the United Nations. The State of World Fisheries and Aquaculture 2020: Sustainability in Action (FAO, 2020).

  • Schell, J. M., Goodwin, D. S. & Siuda, A. N. S. Recent Sargassum inundation events in the Caribbean: shipboard observations reveal dominance of a previously rare form. Oceanography 28, 8–10 (2015).

    Article 

    Google Scholar 

  • Rodríguez-Martínez, R. E. et al. Element concentrations in pelagic Sargassum along the Mexican Caribbean coast in 2018–2019. Peer J. 8, e8667 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Flannery, T. How farming giant seaweed can feed fish and fix the climate. The Conversation Trust https://theconversation.com/how-farming-giant-seaweed-can-feed-fish-and-fix-the-climate-81761 (2017).

  • GESAMP. Methodology for the Evaluation of Ballast Water Management Systems Using Active Substances. GESAMP No. 101 (eds Linders, J. & Dock, A.) (International Maritime Organization, 2019).

  • Lenton, A., Boyd, P. W., Thatcher, M. & Emmerson, K. M. Foresight must guide geoengineering research and development. Nat. Clim. Change 9, 342 (2019).

    Article 

    Google Scholar 

  • Sumaila, U. R. Financing a sustainable ocean economy. Nat. Commun. 12, 3259 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rockström, J. et al. Planetary boundaries: exploring the safe operating space for humanity. Ecol. Soc. 14, 32 (2009).

    Article 

    Google Scholar 

  • Rech, S., Salmina, S., Borrell Pichs, Y. J. & García-Vazquez, E. Dispersal of alien invasive species on anthropogenic litter from European mariculture areas. Mar. Pollut. Bull. 131, 10–16 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Therriault, T. W. et al. The invasion risk of species associated with Japanese tsunami marine debris in Pacific North America and Hawaii. Mar. Pollut. Bull. 132, 82–89 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Miller, J. A., Carlton, J. T., Chapman, J. W., Geller, J. B. & Ruiz, G. M. Transoceanic dispersal of the mussel Mytilus galloprovincialis on Japanese tsunami marine debris: an approach for evaluating rafting of a coastal species at sea. Mar. Pollut. Bull. 132, 60–69 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Carlton, J. T. et al. Tsunami-driven rafting: transoceanic species dispersal and implications for marine biogeography. Science 357, 1402–1406 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hunt, G. L. Jr et al. Advection in polar and sub-polar environments: impacts on high latitude marine ecosystems. Prog. Oceanogr. 149, 40–81 (2016).

    Article 

    Google Scholar 

  • Hallegraeff, G. M. & Bolch, C. J. Transport of dinoflagellate cysts in ship’s ballast water: implications for plankton biogeography and aquaculture. J. Plankton Res. 14, 1067–1084 (1992).

    Article 

    Google Scholar 

  • Russell, L. K., Hepburn, C. D., Hurd, C. L. & Stuart, M. D. The expanding range of Undaria pinnatifida in southern New Zealand: distribution, dispersal mechanisms and the invasion of wave-exposed environments. Biol. Invasions 10, 103–115 (2008).

    Article 

    Google Scholar 

  • Uwai, S. et al. Genetic diversity in Undaria pinnatifida (Laminariales, Phaeophyceae) deduced from mitochondria genes—origins and succession of introduced populations. Phycologia 45, 687–695 (2006).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Amy Moran-Thomas receives the Edgerton Faculty Achievement Award

    Strengthening students’ knowledge and experience in climate and sustainability