Paine, R. T. Food web complexity and species diversity. Am. Nat. 100, 65–75 (1966).
McGrady-Steed, J., Harris, P. M. & Morin, P. J. Biodiversity regulates ecosystem predictability. Nature 390, 162–165 (1997).
Google Scholar
Naeem, S. & Li, S. Biodiversity enhances ecosystem reliability. Nature 390, 507–509 (1997).
Google Scholar
van Altena, C., Hemerik, L. & de Ruiter, P. C. Food web stability and weighted connectance: the complexity–stability debate revisited. Theor. Ecol. 9, 49–58 (2016).
May, R. M. Will a large complex system be stable?. Nature 238, 413–414 (1972).
Google Scholar
Namba, T. Multi-faceted approaches toward unravelling complex ecological networks. Popul. Ecol. 57, 3–19 (2015).
McCann, K. S. The diversity–stability debate. Nature 405, 228–233 (2000).
Google Scholar
Pimm, S. L. & Pimm, S. L. The balance of nature?: Ecological issues in the conservation of species and communities (University of Chicago Press, 1991).
Google Scholar
Landi, P., Minoarivelo, H. O., Brännström, Å., Hui, C. & Dieckmann, U. Complexity and stability of ecological networks: a review of the theory. Popul. Ecol. 60, 319–345 (2018).
Baiser, B., Gotelli, N. J., Buckley, H. L., Miller, T. E. & Ellison, A. M. Geographic variation in network structure of a nearctic aquatic food web. Glob. Ecol. Biogeogr. 21, 579–591 (2012).
Marczak, L. B. et al. Latitudinal variation in top-down and bottom-up control of a salt marsh food web. Ecology 92, 276–281 (2011).
Google Scholar
Takemoto, K., Kanamaru, S. & Feng, W. Climatic seasonality may affect ecological network structure: food webs and mutualistic networks. Biosystems 121, 29–37 (2014).
Google Scholar
De Angelis, D. L. Stability and connectance in food web models. Ecology 56, 238–243 (1975).
Borrvall, C., Ebenman, B. & Tomas Jonsson, T. J. Biodiversity lessens the risk of cascading extinction in model food webs. Ecol. Lett. 3, 131–136 (2000).
Stouffer, D. B. & Bascompte, J. Compartmentalization increases food-web persistence. Proc. Natl. Acad. Sci. 108, 3648–3652 (2011).
Google Scholar
Dunne, J. A., Williams, R. J. & Martinez, N. D. Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecol. Lett. 5, 558–567 (2002).
Dunne, J. A. & Williams, R. J. Cascading extinctions and community collapse in model food webs. Philos. Trans. R. Soc. B. Biol. Sci. 364, 1711–1723 (2009).
McCann, K., Hastings, A. & Huxel, G. R. Weak trophic interactions and the balance of nature. Nature 395, 794–798 (1998).
Google Scholar
Barabás, G., Michalska-Smith, M. J. & Allesina, S. Self-regulation and the stability of large ecological networks. Nat. Ecol. Evol. 1, 1870–1875 (2017).
Google Scholar
Winemiller, K. O. Spatial and temporal variation in tropical fish trophic networks. Ecol. Monogr. 60, 331–367 (1990).
Paine, R. T. Food-web analysis through field measurement of per capita interaction strength. Nature 355, 73–75 (1992).
Google Scholar
Wootton, J. T. Estimates and tests of per capita interaction strength: diet, abundance, and impact of intertidally foraging birds. Ecol. Monogr. 67, 45–64 (1997).
Gellner, G. & McCann, K. S. Consistent role of weak and strong interactions in high-and low-diversity trophic food webs. Nat. Commun. 7, 1–7 (2016).
Mougi, A. & Kondoh, M. Diversity of interaction types and ecological community stability. Science (80-.) 337, 349–351 (2012).
Google Scholar
Kondoh, M. & Mougi, A. Interaction-type diversity hypothesis and interaction strength: the condition for the positive complexity–stability effect to arise. Popul. Ecol. 57, 21–27 (2015).
Mougi, A. & Kondoh, M. Stability of competition–antagonism–mutualism hybrid community and the role of community network structure. J. Theor. Biol. 360, 54–58 (2014).
Google Scholar
Mougi, A. & Kondoh, M. Food-web complexity, meta-community complexity and community stability. Sci. Rep. 6, 1–5 (2016).
Brose, U., Williams, R. J. & Martinez, N. D. Allometric scaling enhances stability in complex food webs. Ecol. Lett. 9, 1228–1236 (2006).
Google Scholar
Kondoh, M. Foraging adaptation and the relationship between food-web complexity and stability. Science (80-.) 299, 1388–1391 (2003).
Google Scholar
Kawatsu, K. & Kondoh, M. Density-dependent interspecific interactions and the complexity-stability relationship. Proc. R. Soc. B Biol. Sci. 285, 20180698 (2018).
Oaten, A. & Murdoch, W. W. Functional response and stability in predator-prey systems. Am. Nat. 109, 289–298 (1975).
Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).
Nunney, L. The stability of complex model ecosystems. Am. Nat. 115, 639–649 (1980).
Google Scholar
Kartascheff, B., Guill, C. & Drossel, B. Positive complexity–stability relations in food web models without foraging adaptation. J. Theor. Biol. 259, 12–23 (2009).
Google Scholar
Sih, A., Englund, G. & Wooster, D. Emergent impacts of multiple predators on prey. Trends Ecol. Evol. 13, 350–355 (1998).
Google Scholar
Kéfi, S. et al. More than a meal… integrating non-feeding interactions into food webs. Ecol. Lett. 15, 291–300 (2012).
Google Scholar
Terry, J. C. D., Morris, R. J. & Bonsall, M. B. Trophic interaction modifications: an empirical and theoretical framework. Ecol. Lett. 20, 1219–1230 (2017).
Google Scholar
Wootton, J. T. The nature and consequences of indirect effects in ecological communities. Annu. Rev. Ecol. Syst. 25, 443–466 (1994).
Werner, E. E. & Peacor, S. D. A review of trait-mediated indirect interactions in ecological communities. Ecology 84, 1083–1100 (2003).
Bolker, B., Holyoak, M., Křivan, V., Rowe, L. & Schmitz, O. Connecting theoretical and empirical studies of trait-mediated interactions. Ecology 84, 1101–1114 (2003).
Schmitz, O. J. Predator diversity and trophic interactions. Ecology 88, 2415–2426 (2007).
Google Scholar
Feng, J., Dakos, V. & van Nes, E. H. Does predator interference cause alternative stable states in multispecies communities?. Theor. Popul. Biol. 82, 170–176 (2012).
Google Scholar
Arditi, R., Callois, J.-M., Tyutyunov, Y. & Jost, C. Does mutual interference always stabilize predator–prey dynamics? A comparison of models. C. R. Biol. 327, 1037–1057 (2004).
Google Scholar
DeAngelis, D. L., Goldstein, R. A. & O’Neill, R. V. A model for tropic interaction. Ecology 56, 881–892 (1975).
Rall, B. C., Guill, C. & Brose, U. Food-web connectance and predator interference dampen the paradox of enrichment. Oikos 117, 202–213 (2008).
Neutel, A.-M., Heesterbeek, J. A. P. & de Ruiter, P. C. Stability in real food webs: weak links in long loops. Science (80-.) 296, 1120–1123 (2002).
Google Scholar
Havens, K. Scale and structure in natural food webs. Science (80-.) 257, 1107–1109 (1992).
Google Scholar
Martinez, N. D. Constant connectance in community food webs. Am. Nat. 139, 1208–1218 (1992).
Dunne, J. A., Williams, R. J. & Martinez, N. D. Food-web structure and network theory: the role of connectance and size. Proc. Natl. Acad. Sci. 99, 12917–12922 (2002).
Google Scholar
MacArthur, R. Species packing and competitive equilibrium for many species. Theor. Popul. Biol. 1, 1–11 (1970).
Google Scholar
Langkilde, T. & Shine, R. Competing for crevices: interspecific conflict influences retreat-site selection in montane lizards. Oecologia 140, 684–691 (2004).
Google Scholar
Elliott, J. M. Interspecific interference and the functional response of four species of carnivorous stoneflies. Freshw. Biol. 48, 1527–1539 (2003).
Franke, H. D. & Janke, M. Mechanisms and consequences of intra- and interspecific interference competition in Idotea baltica (Pallas) and Idotea emarginata (Fabricius) (Crustacea: Isopoda): a laboratory study of possible proximate causes of habitat segregation. J. Exp. Mar. Bio. Ecol. 227, 1–21 (1998).
Peckarsky, B. L. Mechanisms of intra-and interspecific interference between larval stoneflies. Oecologia 85, 521–529 (1991).
Google Scholar
Kimura, K. & Chiba, S. Interspecific interference competition alters habitat use patterns in two species of land snails. Evol. Ecol. 24, 815–825 (2010).
Franke, H.-D. & Janke, M. Mechanisms and consequences of intra-and interspecific interference competition in Idotea baltica (Pallas) and Idotea emarginata (Fabricius)(Crustacea: Isopoda): a laboratory study of possible proximate causes of habitat segregation. J. Exp. Mar. Bio. Ecol. 227, 1–21 (1998).
Pasch, B., Bolker, B. M. & Phelps, S. M. Interspecific dominance via vocal interactions mediates altitudinal zonation in neotropical singing mice. Am. Nat. 182, E161–E173 (2013).
Google Scholar
Bolger, D. T. & Case, T. J. Intra-and interspecific interference behaviour among sexual and asexual geckos. Anim. Behav. 44, 21–30 (1992).
Wolff, J. O. The effects of density, food, and interspecific interference on home range size in Peromyscus leucopus and Peromyscus maniculatus. Can. J. Zool. 63, 2657–2662 (1985).
Hasegawa, K. & Maekawa, K. Role of visual barriers on mitigation of interspecific interference competition between native and non-native salmonid species. Can. J. Zool. 87, 781–786 (2009).
Denno, R. F., McClure, M. S. & Ott, J. R. Interactions in resurrected. Annu. Rev. Entomol. 40, 297–331 (1995).
Google Scholar
Grether, G. F., Losin, N., Anderson, C. N. & Okamoto, K. The role of interspecific interference competition in character displacement and the evolution of competitor recognition. Biol. Rev. 84, 617–635 (2009).
Google Scholar
Carothers, J. H., Jaksić, F. M. & Jaksic, F. M. Time as a Niche difference: the role of interference competition. Oikos 42, 403 (1984).
Grether, G. F., Peiman, K. S., Tobias, J. A. & Robinson, B. W. Causes and consequences of behavioral interference between species. Trends Ecol. Evol. 32, 760–772 (2017).
Google Scholar
Stouffer, D. B. & Novak, M. Hidden layers of density dependence in consumer feeding rates. Ecol. Lett. 24, 520–532 (2021).
Google Scholar
Beddington, J. R. Mutual interference between parasites or predators and its effect on searching efficiency. J. Anim. Ecol. 44, 331–340 (1975).
Cervantes-Loreto, A., Ayers, C. A., Dobbs, E. K., Brosi, B. J. & Stouffer, D. B. The context dependency of pollinator interference: how environmental conditions and co-foraging species impact floral visitation. Ecol. Lett. 24, 1443–1454 (2021).
Google Scholar
Chen, X. & Cohen, J. E. Transient dynamics and food–web complexity in the Lotka-Volterra cascade model. Proc. R. Soc. Lond. Ser. B Biol. Sci. 268, 869–877 (2001).
Google Scholar
Thébault, E. & Fontaine, C. Stability of ecological communities and the architecture of mutualistic and trophic networks. Science (80-.) 329, 853–856 (2010).
Google Scholar
Guill, C. & Drossel, B. Emergence of complexity in evolving niche-model food webs. J. Theor. Biol. 251, 108–120 (2008).
Google Scholar
Source: Ecology - nature.com