in

Predator interference and complexity–stability in food webs

  • Paine, R. T. Food web complexity and species diversity. Am. Nat. 100, 65–75 (1966).

    Google Scholar 

  • McGrady-Steed, J., Harris, P. M. & Morin, P. J. Biodiversity regulates ecosystem predictability. Nature 390, 162–165 (1997).

    CAS 
    ADS 

    Google Scholar 

  • Naeem, S. & Li, S. Biodiversity enhances ecosystem reliability. Nature 390, 507–509 (1997).

    CAS 
    ADS 

    Google Scholar 

  • van Altena, C., Hemerik, L. & de Ruiter, P. C. Food web stability and weighted connectance: the complexity–stability debate revisited. Theor. Ecol. 9, 49–58 (2016).

    Google Scholar 

  • May, R. M. Will a large complex system be stable?. Nature 238, 413–414 (1972).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • Namba, T. Multi-faceted approaches toward unravelling complex ecological networks. Popul. Ecol. 57, 3–19 (2015).

    Google Scholar 

  • McCann, K. S. The diversity–stability debate. Nature 405, 228–233 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Pimm, S. L. & Pimm, S. L. The balance of nature?: Ecological issues in the conservation of species and communities (University of Chicago Press, 1991).

    MATH 

    Google Scholar 

  • Landi, P., Minoarivelo, H. O., Brännström, Å., Hui, C. & Dieckmann, U. Complexity and stability of ecological networks: a review of the theory. Popul. Ecol. 60, 319–345 (2018).

    Google Scholar 

  • Baiser, B., Gotelli, N. J., Buckley, H. L., Miller, T. E. & Ellison, A. M. Geographic variation in network structure of a nearctic aquatic food web. Glob. Ecol. Biogeogr. 21, 579–591 (2012).

    Google Scholar 

  • Marczak, L. B. et al. Latitudinal variation in top-down and bottom-up control of a salt marsh food web. Ecology 92, 276–281 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Takemoto, K., Kanamaru, S. & Feng, W. Climatic seasonality may affect ecological network structure: food webs and mutualistic networks. Biosystems 121, 29–37 (2014).

    PubMed 

    Google Scholar 

  • De Angelis, D. L. Stability and connectance in food web models. Ecology 56, 238–243 (1975).

    Google Scholar 

  • Borrvall, C., Ebenman, B. & Tomas Jonsson, T. J. Biodiversity lessens the risk of cascading extinction in model food webs. Ecol. Lett. 3, 131–136 (2000).

    Google Scholar 

  • Stouffer, D. B. & Bascompte, J. Compartmentalization increases food-web persistence. Proc. Natl. Acad. Sci. 108, 3648–3652 (2011).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • Dunne, J. A., Williams, R. J. & Martinez, N. D. Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecol. Lett. 5, 558–567 (2002).

    Google Scholar 

  • Dunne, J. A. & Williams, R. J. Cascading extinctions and community collapse in model food webs. Philos. Trans. R. Soc. B. Biol. Sci. 364, 1711–1723 (2009).

    Google Scholar 

  • McCann, K., Hastings, A. & Huxel, G. R. Weak trophic interactions and the balance of nature. Nature 395, 794–798 (1998).

    CAS 
    ADS 

    Google Scholar 

  • Barabás, G., Michalska-Smith, M. J. & Allesina, S. Self-regulation and the stability of large ecological networks. Nat. Ecol. Evol. 1, 1870–1875 (2017).

    PubMed 

    Google Scholar 

  • Winemiller, K. O. Spatial and temporal variation in tropical fish trophic networks. Ecol. Monogr. 60, 331–367 (1990).

    Google Scholar 

  • Paine, R. T. Food-web analysis through field measurement of per capita interaction strength. Nature 355, 73–75 (1992).

    ADS 

    Google Scholar 

  • Wootton, J. T. Estimates and tests of per capita interaction strength: diet, abundance, and impact of intertidally foraging birds. Ecol. Monogr. 67, 45–64 (1997).

    Google Scholar 

  • Gellner, G. & McCann, K. S. Consistent role of weak and strong interactions in high-and low-diversity trophic food webs. Nat. Commun. 7, 1–7 (2016).

    Google Scholar 

  • Mougi, A. & Kondoh, M. Diversity of interaction types and ecological community stability. Science (80-.) 337, 349–351 (2012).

    MathSciNet 
    CAS 
    MATH 
    ADS 

    Google Scholar 

  • Kondoh, M. & Mougi, A. Interaction-type diversity hypothesis and interaction strength: the condition for the positive complexity–stability effect to arise. Popul. Ecol. 57, 21–27 (2015).

    Google Scholar 

  • Mougi, A. & Kondoh, M. Stability of competition–antagonism–mutualism hybrid community and the role of community network structure. J. Theor. Biol. 360, 54–58 (2014).

    PubMed 
    MATH 
    ADS 

    Google Scholar 

  • Mougi, A. & Kondoh, M. Food-web complexity, meta-community complexity and community stability. Sci. Rep. 6, 1–5 (2016).

    Google Scholar 

  • Brose, U., Williams, R. J. & Martinez, N. D. Allometric scaling enhances stability in complex food webs. Ecol. Lett. 9, 1228–1236 (2006).

    PubMed 

    Google Scholar 

  • Kondoh, M. Foraging adaptation and the relationship between food-web complexity and stability. Science (80-.) 299, 1388–1391 (2003).

    CAS 

    Google Scholar 

  • Kawatsu, K. & Kondoh, M. Density-dependent interspecific interactions and the complexity-stability relationship. Proc. R. Soc. B Biol. Sci. 285, 20180698 (2018).

    Google Scholar 

  • Oaten, A. & Murdoch, W. W. Functional response and stability in predator-prey systems. Am. Nat. 109, 289–298 (1975).

    Google Scholar 

  • Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).

    Google Scholar 

  • Nunney, L. The stability of complex model ecosystems. Am. Nat. 115, 639–649 (1980).

    MathSciNet 

    Google Scholar 

  • Kartascheff, B., Guill, C. & Drossel, B. Positive complexity–stability relations in food web models without foraging adaptation. J. Theor. Biol. 259, 12–23 (2009).

    MathSciNet 
    PubMed 
    MATH 
    ADS 

    Google Scholar 

  • Sih, A., Englund, G. & Wooster, D. Emergent impacts of multiple predators on prey. Trends Ecol. Evol. 13, 350–355 (1998).

    CAS 
    PubMed 

    Google Scholar 

  • Kéfi, S. et al. More than a meal… integrating non-feeding interactions into food webs. Ecol. Lett. 15, 291–300 (2012).

    PubMed 

    Google Scholar 

  • Terry, J. C. D., Morris, R. J. & Bonsall, M. B. Trophic interaction modifications: an empirical and theoretical framework. Ecol. Lett. 20, 1219–1230 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wootton, J. T. The nature and consequences of indirect effects in ecological communities. Annu. Rev. Ecol. Syst. 25, 443–466 (1994).

    Google Scholar 

  • Werner, E. E. & Peacor, S. D. A review of trait-mediated indirect interactions in ecological communities. Ecology 84, 1083–1100 (2003).

    Google Scholar 

  • Bolker, B., Holyoak, M., Křivan, V., Rowe, L. & Schmitz, O. Connecting theoretical and empirical studies of trait-mediated interactions. Ecology 84, 1101–1114 (2003).

    Google Scholar 

  • Schmitz, O. J. Predator diversity and trophic interactions. Ecology 88, 2415–2426 (2007).

    PubMed 

    Google Scholar 

  • Feng, J., Dakos, V. & van Nes, E. H. Does predator interference cause alternative stable states in multispecies communities?. Theor. Popul. Biol. 82, 170–176 (2012).

    PubMed 
    MATH 

    Google Scholar 

  • Arditi, R., Callois, J.-M., Tyutyunov, Y. & Jost, C. Does mutual interference always stabilize predator–prey dynamics? A comparison of models. C. R. Biol. 327, 1037–1057 (2004).

    PubMed 

    Google Scholar 

  • DeAngelis, D. L., Goldstein, R. A. & O’Neill, R. V. A model for tropic interaction. Ecology 56, 881–892 (1975).

    Google Scholar 

  • Rall, B. C., Guill, C. & Brose, U. Food-web connectance and predator interference dampen the paradox of enrichment. Oikos 117, 202–213 (2008).

    Google Scholar 

  • Neutel, A.-M., Heesterbeek, J. A. P. & de Ruiter, P. C. Stability in real food webs: weak links in long loops. Science (80-.) 296, 1120–1123 (2002).

    CAS 
    ADS 

    Google Scholar 

  • Havens, K. Scale and structure in natural food webs. Science (80-.) 257, 1107–1109 (1992).

    CAS 
    ADS 

    Google Scholar 

  • Martinez, N. D. Constant connectance in community food webs. Am. Nat. 139, 1208–1218 (1992).

    Google Scholar 

  • Dunne, J. A., Williams, R. J. & Martinez, N. D. Food-web structure and network theory: the role of connectance and size. Proc. Natl. Acad. Sci. 99, 12917–12922 (2002).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • MacArthur, R. Species packing and competitive equilibrium for many species. Theor. Popul. Biol. 1, 1–11 (1970).

    CAS 
    PubMed 

    Google Scholar 

  • Langkilde, T. & Shine, R. Competing for crevices: interspecific conflict influences retreat-site selection in montane lizards. Oecologia 140, 684–691 (2004).

    PubMed 
    ADS 

    Google Scholar 

  • Elliott, J. M. Interspecific interference and the functional response of four species of carnivorous stoneflies. Freshw. Biol. 48, 1527–1539 (2003).

    Google Scholar 

  • Franke, H. D. & Janke, M. Mechanisms and consequences of intra- and interspecific interference competition in Idotea baltica (Pallas) and Idotea emarginata (Fabricius) (Crustacea: Isopoda): a laboratory study of possible proximate causes of habitat segregation. J. Exp. Mar. Bio. Ecol. 227, 1–21 (1998).

    Google Scholar 

  • Peckarsky, B. L. Mechanisms of intra-and interspecific interference between larval stoneflies. Oecologia 85, 521–529 (1991).

    PubMed 
    ADS 

    Google Scholar 

  • Kimura, K. & Chiba, S. Interspecific interference competition alters habitat use patterns in two species of land snails. Evol. Ecol. 24, 815–825 (2010).

    Google Scholar 

  • Franke, H.-D. & Janke, M. Mechanisms and consequences of intra-and interspecific interference competition in Idotea baltica (Pallas) and Idotea emarginata (Fabricius)(Crustacea: Isopoda): a laboratory study of possible proximate causes of habitat segregation. J. Exp. Mar. Bio. Ecol. 227, 1–21 (1998).

    Google Scholar 

  • Pasch, B., Bolker, B. M. & Phelps, S. M. Interspecific dominance via vocal interactions mediates altitudinal zonation in neotropical singing mice. Am. Nat. 182, E161–E173 (2013).

    PubMed 

    Google Scholar 

  • Bolger, D. T. & Case, T. J. Intra-and interspecific interference behaviour among sexual and asexual geckos. Anim. Behav. 44, 21–30 (1992).

    Google Scholar 

  • Wolff, J. O. The effects of density, food, and interspecific interference on home range size in Peromyscus leucopus and Peromyscus maniculatus. Can. J. Zool. 63, 2657–2662 (1985).

    Google Scholar 

  • Hasegawa, K. & Maekawa, K. Role of visual barriers on mitigation of interspecific interference competition between native and non-native salmonid species. Can. J. Zool. 87, 781–786 (2009).

    Google Scholar 

  • Denno, R. F., McClure, M. S. & Ott, J. R. Interactions in resurrected. Annu. Rev. Entomol. 40, 297–331 (1995).

    CAS 

    Google Scholar 

  • Grether, G. F., Losin, N., Anderson, C. N. & Okamoto, K. The role of interspecific interference competition in character displacement and the evolution of competitor recognition. Biol. Rev. 84, 617–635 (2009).

    PubMed 

    Google Scholar 

  • Carothers, J. H., Jaksić, F. M. & Jaksic, F. M. Time as a Niche difference: the role of interference competition. Oikos 42, 403 (1984).

    Google Scholar 

  • Grether, G. F., Peiman, K. S., Tobias, J. A. & Robinson, B. W. Causes and consequences of behavioral interference between species. Trends Ecol. Evol. 32, 760–772 (2017).

    PubMed 

    Google Scholar 

  • Stouffer, D. B. & Novak, M. Hidden layers of density dependence in consumer feeding rates. Ecol. Lett. 24, 520–532 (2021).

    PubMed 

    Google Scholar 

  • Beddington, J. R. Mutual interference between parasites or predators and its effect on searching efficiency. J. Anim. Ecol. 44, 331–340 (1975).

    Google Scholar 

  • Cervantes-Loreto, A., Ayers, C. A., Dobbs, E. K., Brosi, B. J. & Stouffer, D. B. The context dependency of pollinator interference: how environmental conditions and co-foraging species impact floral visitation. Ecol. Lett. 24, 1443–1454 (2021).

    PubMed 

    Google Scholar 

  • Chen, X. & Cohen, J. E. Transient dynamics and food–web complexity in the Lotka-Volterra cascade model. Proc. R. Soc. Lond. Ser. B Biol. Sci. 268, 869–877 (2001).

    CAS 

    Google Scholar 

  • Thébault, E. & Fontaine, C. Stability of ecological communities and the architecture of mutualistic and trophic networks. Science (80-.) 329, 853–856 (2010).

    ADS 

    Google Scholar 

  • Guill, C. & Drossel, B. Emergence of complexity in evolving niche-model food webs. J. Theor. Biol. 251, 108–120 (2008).

    MathSciNet 
    PubMed 
    MATH 
    ADS 

    Google Scholar 


  • Source: Ecology - nature.com

    Stakeholder collaboration

    First-ever Climate Grand Challenges recognizes 27 finalists