Simberloff, D. et al. Impacts of biological invasions: What’s what and the way forward. Trends Ecol. Evol. 28, 58–66 (2013).
Google Scholar
Pyšek, P. et al. Scientists’ warning on invasive alien species. Biol. Rev. 95(6), 1511–1534 (2020).
Google Scholar
Seebens, H. et al. No saturation in the accumulation of alien species worldwide. Nat. Commun. 8, 14435 (2017).
Google Scholar
Bailey, S. A. et al. Trends in the detection of aquatic non–indigenous species across global marine, estuarine and freshwater ecosystems: A 50–year perspective. Divers. Distrib. 26, 1780–1797 (2020).
Google Scholar
Ricciardi, A. Are modern biological invasions an unprecedented form of global change?. Conserv. Biol. 21, 329–336 (2007).
Google Scholar
Meyerson, M. Invasive alien species in an era of globalization. Front. Ecol. Environ. 5, 199–208 (2007).
Google Scholar
Hulme, P. E. Trade, transport and trouble: Managing invasive species pathways in an era of globalization. J. Appl. Ecol. 46, 10–18 (2009).
Google Scholar
Bonnamour, A., Gippet, J. M. & Bertelsmeier, C. Insect and plant invasions follow two waves of globalisation. Ecol. Lett. 24(11), 2418–2426 (2021).
Google Scholar
Piola, R. F. & Johnston, E. L. Pollution reduces native diversity and increases invader dominance in marine hard-substrate communities. Divers. Distrib. 14, 329–342 (2008).
Google Scholar
Rahel, F. J. & Olden, J. D. Assessing the effects of climate change on aquatic invasive species. Conserv. Biol. 22, 521–533 (2008).
Google Scholar
Kenworthy, J. M., Davoult, D. & Lejeusne, C. Compared stress tolerance to short-term exposure in native and invasive tunicates from the NE Atlantic: When the invader performs better. Mar. Biol. 165(10), 1–11 (2018).
Google Scholar
Gollasch, S., Galil, B. S., & Cohen, A. N. Bridging divides: Maritime canals as invasion corridors. In Bridging Divides: Maritime Canals as Invasion Corridors (Vol. 83). https://doi.org/10.1007/978-1-4020-5047-3 (2006).
Galil, B. S. et al. ‘Double trouble’: The expansion of the Suez Canal and marine bioinvasions in the Mediterranean Sea. Biol. Invasions 17, 973–976 (2015).
Google Scholar
Jeschke, J. et al. Support for major hypotheses in invasion biology is uneven and declining. NeoBiota 14, 1–20 (2012).
Google Scholar
Lowry, E. et al. Biological invasions: A field synopsis, systematic review, and database of the literature. Ecol. Evol. 3, 182–196 (2012).
Google Scholar
Brockerhoff, A., & McLay, C. Human-Mediated Spread of Alien Crabs. In In the Wrong Place – Alien Marine Crustaceans: Distribution, Biology and Impacts (pp. 27–106). Springer Netherlands. https://doi.org/10.1007/978-94-007-0591-3_2 (2011).
Hammock, B. G. et al. Low food availability narrows the tolerance of the copepod eurytemora affinis to salinity, but not to temperature. Estuar. Coasts 39, 189–200 (2016).
Google Scholar
Rato, L. D., Crespo, D. & Lemos, M. F. L. Mechanisms of bioinvasions by coastal crabs using integrative approaches – A conceptual review. Ecol. Ind. 125, 107578 (2021).
Google Scholar
Weis, J. S. The role of behavior in the success of invasive crustaceans. Mar. Freshw. Behav. Physiol. 43, 83–98 (2010).
Google Scholar
Hänfling, B., Edwards, F. & Gherardi, F. Invasive alien Crustacea: Dispersal, establishment, impact and control. Biocontrol 56, 573–595 (2011).
Google Scholar
Kouba, A. et al. Identifying economic costs and knowledge gaps of invasive aquatic crustaceans. Sci. Total Environ. 813, 152325 (2022).
Google Scholar
Geburzi, J. C., & McCarthy, M. L. How Do They Do It? – Understanding the Success of Marine Invasive Species. In YOUMARES 8 – Oceans Across Boundaries: Learning from each other (pp. 109–124). Springer International Publishing. https://doi.org/10.1007/978-3-319-93284-2_8 (2018).
Casties, I. & Briski, E. Life history traits of aquatic non-indigenous species: Freshwater vs. marine habitats. Aquat. Invasions 14, 566–581 (2019).
Google Scholar
Grosholz, E. D. & Ruiz, G. M. Predicting the impact of introduced marine species: Lessons from the multiple invasions of the European green crab Carcinus maenas. Biol. Cons. 78, 59–66 (1996).
Google Scholar
Geburzi, J., Graumann, G., Köhnk, S. & Brandis, D. First record of the Asian crab Hemigrapsus takanoi Asakura & Watanabe, 2005 (Decapoda, Brachyura, Varunidae) in the Baltic Sea. BioInvasions Rec. 4, 103–107 (2015).
Google Scholar
Briski, E., Ghabooli, S., Bailey, S. A. & MacIsaac, H. J. Invasion risk posed by macroinvertebrates transported in ships’ ballast tanks. Biol. Invasions 14, 1843–1850 (2012).
Google Scholar
Wasserstraßen-und Schifffahrtsverwaltung des Bundes. Halbjahresbilanz Nord-Ostsee-Kanal 2021. www.wsv.de (2021).
Nour, O. M., Stumpp, M., Morón Lugo, S. C., Barboza, F. R. & Pansch, C. Population structure of the recent invader Hemigrapsus takanoi and prey size selection on Baltic Sea mussels. Aquat. Invasions 15, 297–317 (2020).
Google Scholar
Andersson, A. et al. Projected future climate change and Baltic Sea ecosystem management. Ambio 44(Suppl 3), 345–356 (2015).
Google Scholar
BACC Author Team. Assessment of Climate Change for the Baltic Sea Basin. (2008).
BACC Author Team. Second Assessment of Climate Change for the Baltic Sea Basin. (2015).
Meier, H. E. M. et al. Modeling the combined impact of changing climate and changing nutrient loads on the Baltic Sea environment in an ensemble of transient simulations for 1961–2099. Clim. Dyn. 39, 2421–2441 (2012).
Google Scholar
Meier, H. E. M. et al. Climate change in the baltic sea region: A summary. Earth Syst. Dyn. Discuss. https://doi.org/10.5194/esd-2021-67 (2021).
Google Scholar
Ricciardi, A. et al. Four priority areas to advance invasion science in the face of rapid environmental change. Environ. Rev. 29, 119–141 (2021).
Google Scholar
Solomon, M. E. The natural control of animal populations. J. Anim. Ecol. 18, 1–35 (1949).
Google Scholar
Holling, C. S. Some characteristics of simple types of predation and parasitism. Can. Entomol. 91, 385–398 (1959).
Google Scholar
Dick, J. T. A. et al. Advancing impact prediction and hypothesis testing in invasion ecology using a comparative functional response approach. Biol. Invasions 16, 735–753 (2014).
Google Scholar
Laverty, C. et al. Assessing the ecological impacts of invasive species based on their functional responses and abundances. Biol. Invasions 19, 1653–1665 (2017).
Google Scholar
Anton, A. et al. Global ecological impacts of marine exotic species. Nat. Ecol. Evol. 3, 787–800 (2019).
Google Scholar
Crystal-Ornelas, R. & Lockwood, J. L. The ‘known unknowns’ of invasive species impact measurement. Biol. Invasions 22, 1513–1525 (2020).
Google Scholar
Boudreau, S. A. & Worm, B. Ecological role of large benthic decapods in marine ecosystems: A review. Mar. Ecol. Prog. Ser. 469, 195–213 (2012).
Google Scholar
Dick, J. T. A. et al. Invader relative impact potential: A new metric to understand and predict the ecological impacts of existing, emerging and future invasive alien species. J. Appl. Ecol. 54, 1259–1267 (2017).
Google Scholar
Cornelius, A., Wagner, K. & Buschbaum, C. Prey preferences, consumption rates and predation effects of Asian shore crabs (Hemigrapsus takanoi) in comparison to native shore crabs (Carcinus maenas) in northwestern Europe. Mar. Biodivers. 51(5), 1–17 (2021).
Google Scholar
Elner, R. W. The influence of temperature, sex and chela size in the foraging strategy of the shore crab, Carcinus maenas (L.). Mar. Behav. Physiol. 7, 15–24 (1980).
Google Scholar
Brose, U. Body-mass constraints on foraging behaviour determine population and food-web dynamics. Funct. Ecol. 24, 28–34 (2010).
Google Scholar
Cuthbert, R. N. et al. Influence of intra- and interspecific variation in predator-prey body size ratios on trophic interaction strengths. Ecol. Evol. 10, 5946–5962 (2020).
Google Scholar
Payne, A. & Kraemer, G. P. Morphometry and claw strength of the non-native asian shore crab, Hemigrapsus sanguineus. Northeast. Nat. 20, 478–492 (2013).
Google Scholar
Sedova, L. G. The effect of temperature on the rate of oxygen consumption in the sea urchin Strongylocentrotus intermedius. Russ. J. Mar. Biol. 26, 51–53 (2000).
Google Scholar
Saucedo, P. E., Ocampo, L., Monteforte, M. & Bervera, H. Effect of temperature on oxygen consumption and ammonia excretion in the Calafa mother-of-pearl oyster, Pinctada mazatlanica (Hanley, 1856). Aquaculture 229, 377–387 (2004).
Google Scholar
Nie, H. et al. Effects of temperature and salinity on oxygen consumption and ammonia excretion in different colour strains of the Manila clam, Ruditapes philippinarum. Aquac. Res. 48, 2778–2786 (2017).
Google Scholar
Nguyen, K. D. T. et al. Upper Temperature limits of tropical marine ectotherms: Global warming implications. PLoS ONE 6, e29340 (2011).
Google Scholar
Tattersall, G. J. et al. Coping with thermal challenges: Physiological adaptations to environmental temperatures. In Comprehensive Physiology 2151–2202 (Wiley, Hoboken, 2012).
Google Scholar
Barrios-O’Neill, D., Dick, J. T., Emmerson, M. C., Ricciardi, A. & MacIsaac, H. J. Predator-free space, functional responses and biological invasions. Funct. Ecol. 29(3), 377–384 (2015).
Google Scholar
Tattersall, G. J. et al. Coping with Thermal Challenges: Physiological Adaptations to Environmental Temperatures Vol. 2 (Wiley, Hoboken, 2012).
Bollache, L., Dick, J., Farnsworth, K. & Montgomery, I. Comparison of the functional responses of invasive and native amphipods. Biol. Lett. 4, 166–169 (2008).
Google Scholar
Dick, J. T. A. et al. Ecological impacts of an invasive predator explained and predicted by comparative functional responses. Biol. Invasions 15, 837–846 (2013).
Google Scholar
Cuthbert, R. N., Dickey, J. W. E., Coughlan, N. E., Joyce, P. W. S. & Dick, J. T. A. The functional response ratio (FRR): Advancing comparative metrics for predicting the ecological impacts of invasive alien species. Biol. Invasions 21, 2543–2547 (2019).
Google Scholar
Englund, G., Ohlund, G., Hein, C. L. & Diehl, S. Temperature dependence of the functional response. Ecol Lett 14, 914–921 (2011).
Google Scholar
Jeschke, J. M., Kopp, M. & Tollrian, R. Predator functional responses: Discriminating between handling and digesting prey. Ecol. Monogr. 72(1), 95–112 (2002).
Google Scholar
Dell, A. I., Pawar, S. & van Savage, M. Systematic variation in the temperature dependence of physiological and ecological traits. Proc. Natl. Acad. Sci. U.S.A 108, 10591–10596 (2011).
Google Scholar
South, J., Welsh, D., Anton, A., Sigwart, J. D. & Dick, J. T. A. Increasing temperature decreases the predatory effect of the intertidal shanny Lipophrys pholis on an amphipod prey. J. Fish Biol. 92, 150–164 (2018).
Google Scholar
Pörtner, H.-O. & Knust, R. Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315, 95–97 (2007).
Google Scholar
Dickey, J. W. E. et al. Breathing space: Deoxygenation of aquatic environments can drive differential ecological impacts across biological invasion stages. Biol. Invasions 23, 2831–2847 (2021).
Google Scholar
Watanabe, S., Wilder, M. N., Strüssmann, C. A. & Shinji, J. Short-term responses of the adults of the common Japanese intertidal crab, Hemigrapsus takanoi (Decapoda: Brachyura: Grapsoidea) at different salinities: Osmoregulation, oxygen consumption, and ammonia excretion. J. Crustac. Biol. 29, 269–272 (2009).
Google Scholar
Wasserman, R. J. et al. Using functional responses to quantify interaction effects among predators. Funct. Ecol. 30, 1988–1998 (2016).
Google Scholar
Murdoch, W. W. Switching in general predators: Experiments on predator specificity and stability of prey populations. Ecol. Monogr. 39, 335–354 (1969).
Google Scholar
Gonzalez, A., Lambert, A. & Ricciardi, A. When does ecosystem engineering cause invasion and species replacement?. Oikos 117, 1247–1257 (2008).
Google Scholar
King, J. R. & Tschinkel, W. R. Experimental evidence that human impacts drive fire ant invasions and ecological change. Proc. Natl. Acad. Sci. U.S.A 105, 20339–20343 (2008).
Google Scholar
Asakura, A. & Watanabe, S. Hemigrapsus takanoi, new species, a sibling species of the common Japanese Intertidal Crab H. penicillatus (Decapoda: Brachyura: Grapsoidea). J. Crustac. Biol. 25, 279–292 (2005).
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing. (2021).
Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. R package version 0.4.3, https://CRAN.R-project.org/package=DHARMa (2021).
Crawley, M. J. The R Book (Wiley, Hoboken, 2007).
Google Scholar
Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage, Thousand Oaks, 2019).
Lenth, R. v. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.6.2-1, https://CRAN.R-project.org/package=emmeans (2021).
Pritchard, D. frair: Tools for Functional Response Analysis. R package version 0.5.100, https://CRAN.R-project.org/package=frair (2017).
Juliano, S.A., Nonlinear Curve Fitting: Predation and Functional Response Curves. In: Cheiner, S.M. and Gurven, J., Eds., Design and Analysis of Ecological Experiments, 2nd Edition, Chapman and Hall, London, 178–196. (2001)
Rogers, D. Random search and insect population models. J. Anim. Ecol. 41, 369 (1972).
Google Scholar
Source: Ecology - nature.com