in

Prediction of the potential distribution of the predatory mite Neoseiulus californicus (McGregor) in China under current and future climate scenarios

  • Moraes, G. J., Mcmurtry, J. A., Denmark, H. A. & Campos, C. B. A revised catalog of the mite family Phytoseiidae. Zootaxa 434, 1–494 (2004).

    Article 

    Google Scholar 

  • Fraulo, A. B. & Liburd, O. E. Biological control of twospotted spider mite, Tetranychus urticae, with predatory mite, Neoseiulus californicus, in strawberries. Exp. Appl. Acarol. 43, 109–119 (2007).

    PubMed 
    Article 

    Google Scholar 

  • Kuştutan, O. & Cakmak, I. Development, fecundity, and prey consumption of Neoseiulus californicus (McGregor) fed Tetranychus cinnabarinus Boisduval. Turk. J. Agric. For. 33, 19–28 (2009).

    Google Scholar 

  • Kishimoto, H. et al. Occurrence of Neoseiulus californicus (Acari: Phytoseiidae) on citrus in Kyushu district, Japan. J. Acarol. Soc. Japan 16, 129–137 (2007).

    Article 

    Google Scholar 

  • Albayrak, T., Yorulmaz, S., İnak, E., Toprak, U. & Van Leeuwen, T. Pirimicarb resistance and associated mechanisms in field-collected and selected populations of Neoseiulus californicus. Pestic. Biochem. Phys. 180, 104984 (2022).

    CAS 
    Article 

    Google Scholar 

  • Abdellah, A., Abdelaziz, Z., Philipe, A., Serge, K. & Abdelhamid, E. M. Seasonal trend of Eutetranychus orientalis in Moroccan citrus orchards and its potential control by Neoseiulus californicus and Stethorus punctillum. Syst. Appl. Acarol. 26, 1458–1480 (2021).

    Google Scholar 

  • Vidrih, M., Turnšek, A., Rak Cizej, M., Bohinc, T. & Trdan, S. Results of the single release efficacy of the predatory mite Neoseiulus californicus (McGregor) against the two-spotted spider mite (Tetranychus urticae Koch) on a hop plantation. Appl. Sci. 11, 118 (2021).

    CAS 
    Article 

    Google Scholar 

  • Jiang, C. X., Chen, L., Huang, T. T., Mumtaz, M. & Li, Q. Neoseiulus californicus (Acari: Phytoseiidae) shows good predation potential when reared on an artificial diet supplemented with Tetranychus cinnabarinus. Syst. Appl. Acarol. 26, 2229–2246 (2021).

    Google Scholar 

  • Katayama, H. et al. Density suppression of the citrus red mite Panonychus citri (Acari: Tetranychidae) due to the occurrence of Neoseiulus californicus (McGregor) (Acari: Phytoseiidae) on Satsuma mandarin. Appl. Entomol. Zool. 41, 679–684 (2006).

    Article 

    Google Scholar 

  • Zhu, R., Guo, J. J., Yi, T. C., Xiao, R. & Jin, D. C. Preying potential of predatory mite Neoseiulus californicus to broad mite Polyphagotarsonemus latus. J. Plant Prot. 46, 465–471 (2019) ([In Chinese]).

    Google Scholar 

  • Silva, D. E. et al. Impact of vineyard agrochemicals against Panonychus ulmi (Acari: Tetranychidae) and its natural enemy, Neoseiulus californicus (Acari: Phytoseiidae) in Brazil. Crop Prot. 123, 5–11 (2019).

    CAS 
    Article 

    Google Scholar 

  • Sato, M. E., Da Silva, M. Z., De Souza Filho, M. F., Matioli, A. L. & Raga, A. Management of Tetranychus urticae (Acari: Tetranychidae) in strawberry fields with Neoseiulus californicus (Acari: Phytoseiidae) and acaricides. Exp. Appl. Acarol. 42, 107–120 (2007).

    PubMed 
    Article 

    Google Scholar 

  • De Souza-Pimentel, G. C. et al. Biological control of Tetranychus urticae (Tetranychidae) on rosebushes using Neoseiulus californicus (Phytoseiidae) and agrochemical selectivity. Rev. Colombi. Entomol. 40, 80–84 (2014).

    Google Scholar 

  • Elith, J. & Leathwick, J. R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697 (2009).

    Article 

    Google Scholar 

  • Peterson, A. T. & Shaw, J. Lutzomyia vectors for cutaneous leishmaniasis in southern Brazil: ecological niche models, predicted geographic distribution, and climate change effects. Int. J. Parasitol. 33, 919–931 (2003).

    PubMed 
    Article 

    Google Scholar 

  • Peterson, A. T. & Soberón, J. Species distribution modeling and ecological niche modeling: Getting the Concepts Right. Nat. Conserv. 10, 102–107 (2012).

    Article 

    Google Scholar 

  • Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).

    Article 

    Google Scholar 

  • Stockwell, D. & Peters, D. P. The GARP modelling system: problems and solutions to automated spatial prediction. Int. J. Geogr. Inf. Sci. 13, 143–158 (1999).

    Article 

    Google Scholar 

  • Beaumont, L. J., Hughes, L. & Poulsen, M. Predicting species distributions: use of climatic parameters in BIOCLIM and its impact on predictions of species’ current and future distributions. Ecol. Model. 186, 251–270 (2005).

    Article 

    Google Scholar 

  • Arslan, E. S. & Örücü, Ö. K. MaxEnt modelling of the potential distribution areas of cultural ecosystem services using social media data and GIS. Environ. Dev. Sustain. 23, 2655–2667 (2021).

    Article 

    Google Scholar 

  • Hutchinson, G. E. Concluding remarks. Cold Spring Harb. Symp. Quant. Biol. 22, 415–427 (1957).

    Article 

    Google Scholar 

  • Soberon, J. & Peterson, A. T. Interpretation of models of fundamental ecological niches and species distributions areas. Biodivers. Inf. 2, 1–10 (2005).

    Google Scholar 

  • Ab Lah, N. Z., Yusop, Z., Hashim, M., Salim, J. M. & Numata, S. Predicting the habitat suitability of Melaleuca cajuputi based on the MaxEnt Species Distribution Model. Forests 12, 1449 (2021).

    Article 

    Google Scholar 

  • Ali, H. et al. Expanding or shrinking? range shifts in wild ungulates under climate change in Pamir-Karakoram mountains, Pakistan. PLoS ONE 16, e0260031 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Boral, D. & Moktan, S. Predictive distribution modeling of Swertia bimaculata in Darjeeling-Sikkim Eastern Himalaya using MaxEnt: current and future scenarios. Ecol. Process. 10, 1–16 (2021).

    Article 

    Google Scholar 

  • Kamyo, T. & Asanok, L. Modeling habitat suitability of Dipterocarpus alatus (Dipterocarpaceae) using MaxEnt along the Chao Phraya River in Central Thailand. Forest Sci. Technol. 16, 1–7 (2020).

    ADS 
    Article 

    Google Scholar 

  • Barber, R. A., Ball, S. G., Morris, R. K. A. & Gilbert, F. Target-group backgrounds prove effective at correcting sampling bias in Maxent models. Divers. Distrib. 28, 128–141 (2022).

    Article 

    Google Scholar 

  • Pearson, R. G., Raxworthy, C. J., Nakamura, M. & Peterson, A. T. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J. Biogeogr. 34, 102–117 (2007).

    Article 

    Google Scholar 

  • Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151 (2006).

    Article 

    Google Scholar 

  • Comino, E., Fiorucci, A., Rosso, M., Terenziani, A. & Treves, A. Vegetation and Glacier Trends in the area of the Maritime Alps Natural Park (Italy): MaxEnt application to predict habitat development. Clim. 9, 54 (2021).

    Article 

    Google Scholar 

  • Wang, R. L. et al. Prediction of the potential distribution of the predatory mite Neoseiulus californicus McGregor in China using MaxEnt. Glob. Ecol. Conserv. 29, e01733 (2021).

    Article 

    Google Scholar 

  • Bertolino, S. et al. Spatially explicit models as tools for implementing effective management strategies for invasive alien mammals. Mamm. Rev. 50, 187–199 (2020).

    Article 

    Google Scholar 

  • Raffini, F. et al. From nucleotides to satellite imagery: approaches to identify and manage the invasive Pathogen Xylella fastidiosa and its insect vectors in Europe. Sustainability 12, 4508 (2020).

    CAS 
    Article 

    Google Scholar 

  • Tang, J. T., Li, J. H., Lu, H., Lu, F. P. & Lu, B. Q. Potential distribution of an invasive pest, Euplatypus parallelus, in China as predicted by Maxent. Pest Manag. Sci. 75, 1630–1637 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Chang, Y. et al. Predicting dynamics of the potential breeding habitat of Larus saundersi by MaxEnt model under changing land-use conditions in wetland nature reserve of Liaohe Estuary, China. Remote Sens. 14, 552 (2022).

    ADS 
    Article 

    Google Scholar 

  • Freeman, B. G., Lee-Yaw, J. A., Sunday, J. M. & Hargreaves, A. L. Expanding, shifting and shrinking: The impact of global warming on species’ elevational distributions. Glob. Ecol. Biogeogr. 27, 1268–1276 (2018).

    Article 

    Google Scholar 

  • Smeraldo, S. et al. Generalists yet different: distributional responses to climate change may vary in opportunistic bat species sharing similar ecological traits. Mamm. Rev. 51, 571–584 (2021).

    Article 

    Google Scholar 

  • Pörtner, H. O. et al. Climate Change 2022: The Physical Science Basis. Working Group II contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 15. https://www.ipcc.ch/report/ar6/wg3/ (2022).

  • Ahmed, S. E. et al. Scientists and software–surveying the species distribution modelling community. Divers. Distrib. 21, 258–267 (2015).

    Article 

    Google Scholar 

  • Tognelli, M. F., Roig-Juñent, S. A., Marvaldi, A. E., Flores, G. E. & Lobo, J. M. An evaluation of methods for modelling distribution of Patagonian insects. Rev. Chil. Hist. Nat. 82, 347–360 (2009).

    Article 

    Google Scholar 

  • Pangga, I., Salvacion, A., Hamor, N. & Yap, S. Maximum entropy (MaxEnt) modeling of the potential distribution of Aspidiotus rigidus Reyne (Hemiptera: Diaspididae) in the Philippines. Philipp. Agric. Sci. 104, 1–7 (2021).

    Google Scholar 

  • Zhou, R. B. et al. Projecting the potential distribution of Glossina morsitans (Diptera: Glossinidae) under climate change using the MaxEnt model. Biol. 10, 1150 (2021).

    Article 

    Google Scholar 

  • Soberon, J. & Peterson, A. T. Interpretation of models of fundamental ecological niches and species’s distribtional areas. Biodivers. Inform. 2, 1–10 (2005).

    Article 

    Google Scholar 

  • Soberon, J. M. Niche and area of distribution modeling: a population ecology perspective. Ecography 33, 159–167 (2010).

    Article 

    Google Scholar 

  • Soberon, J. M. & Nakamura, M. Niches and distributional areas: concepts, methods and assumptions. P. Natl. Acad. Sci. USA 106, 19644–19650 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Zhang, Y. X., Ji, J., Chen, X., Lin, J. Z. & Chen, B. L. The effect of temperature on reproduction and development duration of Neoseiulus (Amblyseius) californicus (Mcgregor). Fujian J. Agric. Sci. 27, 157–161 (2012) ([In Chinese]).

    Google Scholar 

  • Neto, M. P., Reis, P. R., Zacarias, M. S. & Silva, R. A. Influence of rainfall on mite distribution in organic and conventional coffee systems. Coffee Sci. 5, 67–74 (2010).

    Google Scholar 

  • Hu, Z., Gui, L. Y., Hua, D. K. & Luo, J. Effect of simulated rainfall on laboratory population dynamics of Tetranychus cinnabarinus. J. Environ. Entomol. 38, 936–941 (2016) ([In Chinese]).

    Google Scholar 

  • Lawler, J. J. Climate change adaptation strategies for resource management and conservation planning. Ann. N. Y. Acad. Sci. 1162, 79–98 (2009).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • www.carbonbrief.org/cmip6-the-next-generation-of-climate-models-explained.

  • Gotoh, T., Yamaguchi, K. & Mori, K. Effect of temperature on life history of the predatory mite Amblyseius (Neoseiulus) californicus (Acari: Phytoseiidae). Exp. Appl. Acarol. 32, 15–30 (2004).

    PubMed 
    Article 

    Google Scholar 

  • Yuan, X. P., Wang, X. D., Wang, J. W. & Zhao, Y. Y. Effects of brief exposure to high temperature on Neoseiulus californicus. Ying Yong Sheng Tai Xue Bao 26, 853–858 (2015) ([In Chinese]).

    PubMed 

    Google Scholar 

  • Zhang, G. H. et al. Intraspecific variations on thermal susceptibility in the predatory mite Neoseiulus barkeri Hughes (Acari: Phytoseiidae): responding to long-term heat acclimations and frequent heat hardenings. Biol. Control 121, 208–215 (2018).

    Article 

    Google Scholar 

  • Phillips, S. J., Dudík, M. & Schapire, R. E.[Internet] Maxent software for modeling species niches and distributions (Version 3.4.1). url: http://biodiversityinformatics.amnh.org/open_source/maxent/. Accessed 17 March 2022.

  • R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. url: https://www.R-project.org/ (2021).

  • Seyedizadeh, S., Ghane-Jahromi, M., Sedaratian-Jahromi, A. & Faraji, F. Discovery of the predatory mite Neoseiulus californicus (Acari: Phytoseiidae) in some rose greenhouses in Iran and describing variation in spermathecal calyx shape. Pers. J. Acarol. 6, 67–70 (2017).

    Google Scholar 

  • Fang, X. D., Nguyen, V. L., Ouyang, G. C. & Wu, W. N. Survey of phytoseiid mites (Acari: Mesostigmata, Phytoseiidae) in citrus orchards and a key for Amblyseiinae in Vietnam. Acarologia 60, 254–267 (2020).

    Article 

    Google Scholar 

  • Greco, N. M., Tetzlaff, G. T. & Liljesthröm, G. G. Presence–absence sampling for Tetranychus urticae and its predator Neoseiulus californicus (Acari: Tetranychidae; Phytoseiidae) on strawberries. Int. J. Pest Manag. 50, 23–27 (2004).

    Article 

    Google Scholar 

  • Beaulieu, F. & Beard, J. J. Acarine biocontrol agents Neoseiulus californicus sensu Athias-Henriot (1977) and N. barkeri Hughes (Mesostigmata: Phytoseiidae) redescribed, their synonymies assessed, and the identity of N. californicus (McGregor) clarified based on examination of types. Zootaxa 4500, 451–507 (2018).

  • Kawashima, M. & Jung, C. Effects of sheltered ground habitats on the overwintering potential of the predacious mite Neoseiulus californicus (Acari: Phytoseiidae) in apple orchards on mainland Korea. Exp. Appl. Acarol. 55, 375–388 (2011).

    PubMed 
    Article 

    Google Scholar 

  • Koller, M., Knapp, M. & Schausberger, P. Direct and indirect adverse effects of tomato on the predatory mite Neoseiulus californicus feeding on the spider mite Tetranychus evansi. Entomol. Exp. Appl. 125, 297–305 (2007).

    Article 

    Google Scholar 

  • Ohno, S. et al. Geographic distribution of phytoseiid mite species (Acari: Phytoseiidae) on crops in Okinawa, a subtropical area of Japan. Entomol. Sci. 15, 115–120 (2012).

    Article 

    Google Scholar 

  • Tixier, M. S., Otto, J., Kreiter, S., Dos Santos, V. & Beard, J. Is Neoseiulus wearnei the Neoseiulus californicus of Australia? Exp. Appl. Acarol. 62, 267–277 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Vacacela Ajila, H. E. et al. Supplementary food for Neoseiulus californicus boosts biological control of Tetranychus urticae on strawberry. Pest Manag. Sci. 75, 1986–1992 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Xu, X. N., Wang, B. M., Wang, E. D. & Zhang, Z. Q. Comments on the identity of Neoseiulus californicus sensu lato (Acari: Phytoseiidae) with a redescription of this species from southern China. Syst. Appl. Acarol. 18, 329–344 (2013).

    Google Scholar 

  • Pringle, K. L. & Heunis, J. M. Biological control of phytophagous mites in apple orchards in the Elgin area of South Africa using the predatory mite, Neoseiulus californicus (McGregor) (Mesostigmata: Phytoseiidae): a benefit-cost analysis. Afr. Entomol. 14, 113–121 (2006).

    Google Scholar 

  • Tai, Y. W. et al. R package ‘corrplot’: Visualization of a Correlation Matrix. url: https://github.com/taiyun/corrplot (2021).

  • Muscarella, R. et al. ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol. Evol. 5, 1198–1205 (2014).

    Article 

    Google Scholar 

  • Araujo, M. B., Pearson, R. G., Tuiller, W. & Erhard, M. Validation of species–climate impact models under climate change. Glob. Change Biol. 11, 1504–1513 (2005).

    ADS 
    Article 

    Google Scholar 

  • Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Pursuing progress at the nanoscale

    MIT engineers design surfaces that make water boil more efficiently