Zelezniak A, Andrejev S, Ponomarova O, Mende DR, Bork P, Patil KR. Metabolic dependencies drive species co-occurrence in diverse microbial communities. Proc Natl Acad Sci. 2015;112:6449–54.
Google Scholar
D’Souza G, Shitut S, Preussger D, Yousif G, Waschina S, Kost C. Ecology and evolution of metabolic cross-feeding interactions in bacteria. Natural Product Reports. 2018;35:455–88.
Google Scholar
Garcia SL, Buck M, McMahon KD, Grossart H-P, Eiler A, Warnecke F. Auxotrophy and intrapopulation complementary in the ‘interactome’ of a cultivated freshwater model community. Mol Ecology. 2015;24:4449–59.
Google Scholar
Johnson WM, Alexander H, Bier RL, Miller DR, Muscarella ME, Pitz KJ, et al. Auxotrophic interactions: A stabilizing attribute of aquatic microbial communities? FEMS Microbiol Ecology. 2020;96:1–14.
D’Souza G, Waschina S, Pande S, Bohl K, Kaleta C, Kost C. Less is more: Selective advantages can explain the prevalent loss of biosynthetic genes in bacteria. Evolution. 2014;68:2559–70.
Google Scholar
Oliveira NM, Niehus R, Foster KR. Evolutionary limits to cooperation in microbial communities. Proc Natl Acad Sci. 2014;111:17941–6.
Google Scholar
Pande S, Kost C. Bacterial unculturability and the formation of intercellular metabolic networks. Trends Microbiol. 2017;25:349–61.
Google Scholar
Douglas AE. The microbial exometabolome: ecological resource and architect of microbial communities. Philos Trans R Soc B: Biological Sci. 2020;375:20190250.
Google Scholar
Paczia N, Nilgen A, Lehmann T, Gätgens J, Wiechert W, Noack S. Extensive exometabolome analysis reveals extended overflow metabolism in various microorganisms. Microbial Cell Factories. 2012;11:122.
Google Scholar
Sokolovskaya OM, Shelton AN, Taga ME. Sharing vitamins: Cobamides unveil microbial interactions. Science. 2020;369:eaba0165.
Google Scholar
Zomorrodi AR, Segrè D. Genome-driven evolutionary game theory helps understand the rise of metabolic interdependencies in microbial communities. Nat Commun. 2017;8:1563.
Google Scholar
D’Souza G, Kost C. Experimental evolution of metabolic dependency in bacteria. PLoS Genetics. 2016;12:e1006364.
Google Scholar
Giri S, Oña L, Waschina S, Shitut S, Yousif G, Kaleta C, et al. Metabolic dissimilarity determines the establishment of cross-feeding interactions in bacteria. Curr Biology. 2021;31:5547–57.
Google Scholar
Jiang X, Zerfaß C, Feng S, Eichmann R, Asally M, Schäfer P, et al. Impact of spatial organization on a novel auxotrophic interaction among soil microbes. ISME J. 2018;12:1443–56.
Google Scholar
Konstantinidis D, Pereira F, Geissen E-M, Grkovska K, Kafkia E, Jouhten P, et al. Adaptive laboratory evolution of microbial co-cultures for improved metabolite secretion. Mol Syst Biology. 2021;17:e10189.
Google Scholar
Harcombe WR, Chacón JM, Adamowicz EM, Chubiz LM, Marx CJ. Evolution of bidirectional costly mutualism from byproduct consumption. Proc Natl Acad Sci. 2018;115:12000–4.
Google Scholar
Giri S, Waschina S, Kaleta C, Kost C. Defining division of labor in microbial communities. J Mol Biol. 2019;431:4712–31.
Google Scholar
Sanchez A, Gore J. Feedback between population and evolutionary dynamics determines the fate of social microbial populations. PLOS Biology. 2013;11:e1001547.
Google Scholar
Preussger D, Giri S, Muhsal LK, Oña L, Kost C. Reciprocal fitness feedbacks promote the evolution of mutualistic cooperation. Curr Biology. 2020;30:3580–3590.e7.
Google Scholar
McNally CP, Borenstein E. Metabolic model-based analysis of the emergence of bacterial cross-feeding via extensive gene loss. BMC Syst Biology. 2018;12:69.
Google Scholar
Estrela S, Morris JJ, Kerr B. Private benefits and metabolic conflicts shape the emergence of microbial interdependencies. Environ Microbiol. 2016;18:1415–27.
Google Scholar
Libby E, Hébert-Dufresne L, Hosseini S-R, Wagner A. Syntrophy emerges spontaneously in complex metabolic systems. PLOS Comput Biology. 2019;15:e1007169.
Google Scholar
Rabbers I, Gottstein W, Feist A, Teusink B, Bruggeman FJ, Bachmann H Selection for cell yield does not reduce overflow metabolism in E. coli. bioRxiv. 2021:2021.05.24.445453.
Pacheco AR, Moel M, Segrè D. Costless metabolic secretions as drivers of interspecies interactions in microbial ecosystems. Nat Commun. 2019;10:103.
Google Scholar
Gude S, Pherribo GJ, Taga ME. Emergence of metabolite provisioning as a by-product of evolved biological functions. mSystems. 2020;5:e00259–20.
Google Scholar
Campbell K, Herrera-Dominguez L, Correia-Melo C, Zelezniak A, Ralser M. Biochemical principles enabling metabolic cooperativity and phenotypic heterogeneity at the single cell level. Current Opinion in. Syst Biology. 2018;8:97–108.
Morris JJ. Black Queen evolution: the role of leakiness in structuring microbial communities. Trends Genetics. 2015;31:475–82.
Google Scholar
van Tatenhove-Pel RJ, Rijavec T, Lapanje A, van Swam I, Zwering E, Hernandez-Valdes JA, et al. Microbial competition reduces metabolic interaction distances to the low µm-range. ISME J. 2021;15:688–701.
Google Scholar
Shitut S, Ahsendorf T, Pande S, Egbert M, Kost C. Nanotube-mediated cross-feeding couples the metabolism of interacting bacterial cells. Environ Microbiol. 2019;21:1306–20.
Google Scholar
Klee SM, Sinn JP, Finley M, Allman EL, Smith PB, Aimufua O, et al. Erwinia amylovora auxotrophic mutant exometabolomics and virulence on apples. Appl Environ Microbiol. 2019;85:e00935–19.
Google Scholar
Hibbing ME, Fuqua C, Parsek MR, Peterson SB. Bacterial competition: surviving and thriving in the microbial jungle. Nat Rev Microbiol. 2010;8:15–25.
Google Scholar
Wienhausen G, Noriega-Ortega BE, Niggemann J, Dittmar T, Simon M The exometabolome of two model strains of the Roseobacter group: A marketplace of microbial metabolites. Front Microbiol. 2017;8.
Pinu FR, Granucci N, Daniell J, Han T-L, Carneiro S, Rocha I, et al. Metabolite secretion in microorganisms: the theory of metabolic overflow put to the test. Metabolomics. 2018;14:43.
Google Scholar
Shiio I, Ôtsuka S-I, Takahashi M. Effect of biotin on the bacterial formation of glutamic acid: I. Glutamate formation and cellular permeability of amino acids. J Biochem. 1962;51:56–62.
Google Scholar
Konings WN, Poolman B, Driessen AJM. Can the excretion of metabolites by bacteria be manipulated? FEMS Microbiol Rev. 1992;8:93–108.
Google Scholar
Zampieri M, Hörl M, Hotz F, Müller NF, Sauer U. Regulatory mechanisms underlying coordination of amino acid and glucose catabolism in Escherichia coli. Nat Commun. 2019;10:3354.
Google Scholar
Kochanowski K, Okano H, Patsalo V, Williamson J, Sauer U, Hwa T. Global coordination of metabolic pathways in Escherichia coli by active and passive regulation. Mol Syst Biology. 2021;17:e10064.
Google Scholar
Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 1999;27:29–34.
Google Scholar
Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biology. 2006;2:2006.0008.
Google Scholar
Thomason LC, Costantino N, Court DL E. coli genome manipulation by P1 transduction. Curr Protocols Mol Biology. 2007;79:1.17.1-1.8.
Pande S, Shitut S, Freund L, Westermann M, Bertels F, Colesie C, et al. Metabolic cross-feeding via intercellular nanotubes among bacteria. Nat Commun. 2015;6:6238.
Google Scholar
Oña L, Giri S, Avermann N, Kreienbaum M, Thormann KM, Kost C. Obligate cross-feeding expands the metabolic niche of bacteria. Nat Ecology Evolut. 2021;5:1224–32.
Google Scholar
Choi K-H, Gaynor JB, White KG, Lopez C, Bosio CM, Karkhoff-Schweizer RR, et al. A Tn7-based broad-range bacterial cloning and expression system. Nat Methods. 2005;2:443–8.
Google Scholar
Vanstockem M, Michiels K, Vanderleyden J, Van Gool AP. Transposon Mutagenesis of Azospirillum brasilense and Azospirillum lipoferum: Physical analysis of Tn5 and Tn5-Mob insertion mutants. Appl Environ Microbiology. 1987;53:410–5.
Google Scholar
Source: Ecology - nature.com