in

Protected areas have a mixed impact on waterbirds, but management helps

  • High Ambition Coalition for Nature and People. 50 Countries Announce Bold Commitment to Protect at Least 30% of the World’s Land and Ocean by 2030 (Campaign for Nature, 2021).

  • Waldron A. et al. Protecting 30% of the Planet for Nature: Costs, Benefits and Economic Implications (Campaign for Nature, 2020).

  • Geldmann, J., Manica, A., Burgess, N. D., Coad, L. & Balmford, A. A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. Proc. Natl Acad. Sci. USA 116, 23209–23223 (2019).

    CAS 
    Article 

    Google Scholar 

  • Nelson, A. & Chomitz, K. M. Protected Area Effectiveness in Reducing Tropical Deforestation (The World Bank, 2009).

  • Scharlemann, J. P. W. et al. Securing tropical forest carbon: the contribution of protected areas to REDD. Oryx 44, 352–357 (2010).

    Article 

    Google Scholar 

  • Feng, Y. et al. Assessing the effectiveness of global protected areas based on the difference in differences model. Ecol. Indic. 130, 108078 (2021).

    Article 

    Google Scholar 

  • Laurance, W. F. et al. The fate of Amazonian forest fragments: A 32-year investigation. Biol. Conserv. 144, 56–67 (2011).

    Article 

    Google Scholar 

  • Laurance, W. F. et al. Averting biodiversity collapse in tropical forest protected areas. Nature 489, 290–294 (2012).

    CAS 
    Article 

    Google Scholar 

  • Terraube, J., Van doninck, J., Helle, P. & Cabeza, M. Assessing the effectiveness of a national protected area network for carnivore conservation. Nat. Commun. 11, 2957 (2020).

    CAS 
    Article 

    Google Scholar 

  • Barnes, M. D. et al. Wildlife population trends in protected areas predicted by national socio-economic metrics and body size. Nat. Commun. 7, 12747 (2016).

    CAS 
    Article 

    Google Scholar 

  • Amano, T. et al. Successful conservation of global waterbird populations depends on effective governance. Nature 553, 199–202 (2018).

    CAS 
    Article 

    Google Scholar 

  • Kleijn, D., Cherkaoui, I., Goedhart, P. W., van der Hout, J. & Lammertsma, D. Waterbirds increase more rapidly in Ramsar-designated wetlands than in unprotected wetlands. J. Appl. Ecol. 51, 289–298 (2014).

    Article 

    Google Scholar 

  • Reyes-Arriagada, R. et al. Population trends of a mixed-species colony of Humboldt and Magellanic Penguins in Southern Chile after establishing a protected area. Avian Conserv. Ecol. 8, 13 (2013).

    Google Scholar 

  • Bukart, K. Motion 101 passes at IUCN, calls for protecting 50% of Earth’s lands and seas. One Earth https://www.oneearth.org/motion-101-passes-at-iucn-calls-for-protecting-50-of-earths-lands-and-seas/ (2021).

  • Protected Planet Report 2020 (UNEP-WCMC and IUCN, 2021).

  • Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES Secretariat, 2019).

  • Barnes, M. D., Glew, L., Wyborn, C. & Craigie, I. D. Prevent perverse outcomes from global protected area policy. Nat, Ecol. Evol. 2, 759–762 (2018).

    Article 

    Google Scholar 

  • Pressey, R. L., Cabeza, M., Watts, M. E., Cowling, R. M. & Wilson, K. A. Conservation planning in a changing world. Trends Ecol. Evol. 22, 583–592 (2007).

    Article 

    Google Scholar 

  • Geldmann, J. et al. Effectiveness of terrestrial protected areas in reducing habitat loss and population declines. Biol. Conserv. 161, 230–238 (2013).

    Article 

    Google Scholar 

  • Rodrigues, A. S. L. & Cazalis, V. The multifaceted challenge of evaluating protected area effectiveness. Nat. Commun. 11, 5147 (2020).

    CAS 
    Article 

    Google Scholar 

  • Redford, K. H. The empty forest. BioScience 42, 412–422 (1992).

    Article 

    Google Scholar 

  • Ferraro, P. J. Counterfactual thinking and impact evaluation in environmental policy. N. Direct. Eval. 2009, 75–84 (2009).

    Article 

    Google Scholar 

  • Adams, V. M., Barnes, M. & Pressey, R. L. Shortfalls in conservation evidence: moving from ecological effects of interventions to policy evaluation. One Earth 1, 62–75 (2019).

    Article 

    Google Scholar 

  • Wauchope, H. S. et al. Evaluating impact using time-series data. Trends Ecol. Evol. 36, 196–205 (2021).

    Article 

    Google Scholar 

  • Kingsford, R. T., Roshier, D. A. & Porter, J. L. Australian waterbirds time and space travellers in dynamic desert landscapes. Mar. Freshw. Res. 61, 875–884 (2010).

    CAS 
    Article 

    Google Scholar 

  • The Ramsar Convention Secretariat. Managing Ramsar Sites. ramsar.org https://www.ramsar.org/sites-countries/managing-ramsar-sites (2014).

  • European Commission. The Birds Directive. https://ec.europa.eu/environment/nature/legislation/birdsdirective/index_en.htm (accessed 3 April 2022).

  • Zhang, W., Sheldon, B. C., Grenyer, R. & Gaston, K. J. Habitat change and biased sampling influence estimation of diversity trends. Curr. Biol. 31, 3656–3662.e3 (2021).

    CAS 
    Article 

    Google Scholar 

  • Bruner, A. G., Gullison, R. E., Rice, R. E. & da Fonseca, G. A. B. Effectiveness of parks in protecting tropical biodiversity. Science 291, 125–128 (2001).

    CAS 
    Article 

    Google Scholar 

  • Carranza, T., Balmford, A., Kapos, V. & Manica, A. Protected area effectiveness in reducing conversion in a rapidly vanishing ecosystem: the Brazilian Cerrado. Conserv. Lett. 7, 216–223 (2014).

    Article 

    Google Scholar 

  • Rabinowitz, D. In The Biological Aspects of Rare Plant Conservation (ed. Synge, H.) 205–217 (John Wiley & Sons, 1981).

  • Daskalova, G. N., Myers-Smith, I. H. & Godlee, J. L. Rare and common vertebrates span a wide spectrum of population trends. Nat. Commun. 11, 4394 (2020).

    CAS 
    Article 

    Google Scholar 

  • Hettiarachchi, M., Morrison, T. H. & McAlpine, C. Forty-three years of Ramsar and urban wetlands. Glob. Environ. Change 32, 57–66 (2015).

    Article 

    Google Scholar 

  • Munishi, P., Chuwa, J., Kilungu, H., Moe, S. & Temu, R. Management effectiveness and conservation initiatives in the Kilombero Valley Flood Plains Ramsar Site, Tanzania. Tanzania J. For. Nat. Conserv. 81, 1–10 (2012).

    Google Scholar 

  • Fahrig, L. Why do several small patches hold more species than few large patches? Glob. Ecol. Biogeogr. 29, 615–628 (2020).

    Article 

    Google Scholar 

  • Newmark, W. D. Extinction of mammal populations in western North American National Parks. Conserv. Biol. 9, 512–526 (1995).

    Article 

    Google Scholar 

  • Mascia, M. B. & Pailler, S. Protected area downgrading, downsizing, and degazettement (PADDD) and its conservation implications. Conserv. Lett. 4, 9–20 (2011).

    Article 

    Google Scholar 

  • Di Marco, M. et al. Changing trends and persisting biases in three decades of conservation science. Glob. Ecol. Conserv. 10, 32–42 (2017).

    Article 

    Google Scholar 

  • Wetlands International. Asian Waterbird Census. https://south-asia.wetlands.org/our-approach/healthy-wetland-nature/asian-waterbird-census/ (accessed 3 April 2022).

  • Gill, D. A. et al. Capacity shortfalls hinder the performance of marine protected areas globally. Nature 543, 665–669 (2017).

    CAS 
    Article 

    Google Scholar 

  • Geldmann, J. et al. A global analysis of management capacity and ecological outcomes in terrestrial protected areas. Conserv. Lett. 11, e12434 (2018).

    Article 

    Google Scholar 

  • Kingsford, R. T., Bino, G. & Porter, J. L. Continental impacts of water development on waterbirds, contrasting two Australian river basins: global implications for sustainable water use. Glob. Change Biol. 23, 4958–4969 (2017).

    Article 

    Google Scholar 

  • Jia, Q., Wang, X., Zhang, Y., Cao, L. & Fox, A. D. Drivers of waterbird communities and their declines on Yangtze River floodplain lakes. Biol. Conserv. 218, 240–246 (2018).

    Article 

    Google Scholar 

  • Lehikoinen, A., Rintala, J., Lammi, E. & Pöysä, H. Habitat-specific population trajectories in boreal waterbirds: alarming trends and bioindicators for wetlands. Animal Conserv. 19, 88–95 (2016).

    Article 

    Google Scholar 

  • Boyd, C. et al. Spatial scale and the conservation of threatened species. Conserv. Lett. 1, 37–43 (2008).

    Article 

    Google Scholar 

  • Schleicher, J. et al. Protecting half of the planet could directly affect over one billion people. Nat. Sustain. 2, 1094–1096 (2019).

    Article 

    Google Scholar 

  • Wauchope, H. et al. Quantifying the impact of protected areas on near-global waterbird population trends, a pre-analysis plan. Preprint at https://doi.org/10.7287/peerj.preprints.27741v2 (2019).

  • Nosek, B. A., Ebersole, C. R., DeHaven, A. C. & Mellor, D. T. The preregistration revolution. Proc. Natl Acad. Sci. USA 115, 2600–2606 (2018).

    CAS 
    Article 

    Google Scholar 

  • R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).

  • QGIS Geographic Information System (QGIS, 2021).

  • Hadley Wickham. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).

  • Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S (Springer, 2002).

  • The World Database on Protected Areas (WDPA)/The Global Database on Protected Areas Management Effectiveness (GD-PAME) www.protectedplanet.net (UNEP-WCMC and IUCN, 2019).

  • Global Self-consistent, Hierarchical, High-resolution Geography Database (GSHHG) (NOAA, 2017).

  • Coetzer, K. L., Witkowski, E. T. F. & Erasmus, B. F. N. Reviewing Biosphere Reserves globally: effective conservation action or bureaucratic label? Biol. Rev. 89, 82–104 (2014).

    Article 

    Google Scholar 

  • Ament, J. M. & Cumming, G. S. Scale dependency in effectiveness, isolation, and social-ecological spillover of protected areas. Conserv. Biol. 30, 846–855 (2016).

    Article 

    Google Scholar 

  • Naimi, B., Hamm, N. A. S., Groen, T. A., Skidmore, A. K. & Toxopeus, A. G. Where is positional uncertainty a problem for species distribution modelling? Ecography 37, 191–203 (2014).

    Article 

    Google Scholar 

  • Salmerón Gómez, R., García, Pérez, J., López Martín, M. D. M. & García, C. G. Collinearity diagnostic applied in ridge estimation through the variance inflation factor. J. Appl. Stat. 43, 1831–1849 (2016).

    MathSciNet 
    Article 

    Google Scholar 

  • Gu, X. S. & Rosenbaum, P. R. Comparison of multivariate matching methods: structures, distances, and algorithms. J. Comput. Graph. Stat. 2, 405–420 (1993).

    Google Scholar 

  • Stuart, E. A. Matching methods for causal inference: a review and a look forward. Stat. Sci. 25, 1–21 (2010).

    MathSciNet 
    Article 

    Google Scholar 

  • King, G. & Nielsen, R. Why propensity scores should not be used for matching. Pol. Anal. 27, 435–454 (2019).

    Article 

    Google Scholar 

  • Rosenbaum, P. R. DOS: design of observational studies. https://cran.r-project.org/web/packages/DOS/index.html (2018).

  • Linden, A. A matching framework to improve causal inference in interrupted time-series analysis. J. Eval. Clin. Pract. 24, 408–415 (2018).

    Article 

    Google Scholar 

  • Simmons, B. I., Hoeppke, C. & Sutherland, W. J. Beware greedy algorithms. J. Anim. Ecol. 88, 804–807 (2019).

    Article 

    Google Scholar 

  • Austin, P. C. Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity-score matched samples. Stat. Med. 28, 3083–3107 (2009).

    MathSciNet 
    Article 

    Google Scholar 

  • Rubin, D. B. Using propensity scores to help design observational studies: application to the tobacco litigation. Health Serv. Outcomes Res. Methodol. 2, 169–188 (2001).

    Article 

    Google Scholar 

  • Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage, 2019).

  • Hartig, F. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. https://cran.r-project.org/web/packages/DHARMa/index.html (2021).

  • Zeileis, A. & Hothorn, T. Diagnostic checking in regression relationships. R News 2, 7–10 (2002).

    Google Scholar 

  • Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 48 (2015).

    Article 

    Google Scholar 

  • Christensen, R. Ordinal–regression models for ordinal data. https://cran.r-project.org/web/packages/ordinal/index.html (2019).

  • Lüdecke, D. ggeffects: tidy data frames of marginal effects from regression models. J. Op. Source Softw. 3, 772 (2018).

    Article 

    Google Scholar 

  • McKay, M. D., Beckman, R. J. & Conover, W. J. Comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21, 239–245 (1979).

    MathSciNet 

    Google Scholar 

  • Carnell, R. lhs: latin hypercube samples. https://cran.r-project.org/web/packages/lhs/index.html (2020).

  • Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642 (2014).

    Article 

    Google Scholar 

  • Lu, C. & Tian, H. Global nitrogen and phosphorus fertilizer use for agriculture production in the past half century: Shifted hot spots and nutrient imbalance. Earth Syst. Sci. Data 9, 181–192 (2017).

    Article 

    Google Scholar 

  • Joppa, L. N. & Pfaff, A. High and far: biases in the location of protected areas. PLoS ONE 4, e8273 (2009).

    Article 

    Google Scholar 

  • Hurtt, G. C. et al. Harmonization of land-use scenarios for the period 1500-2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Clim. Change 109, 117–161 (2011).

    Article 

    Google Scholar 

  • Lloyd, C. T., Sorichetta, A. & Tatem, A. J. High resolution global gridded data for use in population studies. Sci. Data 4, 17001 (2017).

    Article 

    Google Scholar 

  • Pekel, J.-F., Cottam, A., Gorelick, N. & Belward, A. S. High-resolution mapping of global surface water and its long-term changes. Nature 540, 418–422 (2016).

    CAS 
    Article 

    Google Scholar 

  • Sandvik, B. World Borders Dataset. Thematic Mapping http://thematicmapping.org/downloads/world_borders.php (2009).

  • BirdLife International. Species Distribution Data Download http://www.birdlife.org/datazone/info/spcdownload (accessed 25 February 2020).

  • Wilman, H. et al. EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027 (2014).

    Article 

    Google Scholar 

  • WWF International. Management Effectiveness Tracking Tool https://wwfeu.awsassets.panda.org/downloads/mett2_final_version_july_2007.pdf (2007).


  • Source: Ecology - nature.com

    Empowering people to adapt on the frontlines of climate change

    Amy Moran-Thomas receives the Edgerton Faculty Achievement Award