in

Protecting boreal caribou habitat can help conserve biodiversity and safeguard large quantities of soil carbon in Canada

  • Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived? Nature 471, 51–57. https://doi.org/10.1038/nature09678 (2011).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Ceballos, G. et al. Accelerated human-induced species losses: Entering the sixth mass extinction. Sci. Adv. 1, 5. https://doi.org/10.1126/sciadv.1400253 (2015).

    Article 

    Google Scholar 

  • Purvis, A. et al. IPBES global assessment on biodiversity and ecosystem services chapter 2.2 status and trends. Nature https://doi.org/10.5281/zenodo.5517457.svg (2019).

  • Balvernara, P. et al. IPBES global assessment on biodiversity and ecosystem services chapter 2.2 status and trends. Drivers. Change https://doi.org/10.5281/zenodo.5517423 (2019).

  • Carrol, C. & Noss, R. F. Rewilding in the face of climate change. Conserv. Biol. 35, 155–167. https://doi.org/10.1111/cobi.13531 (2020).

    Article 

    Google Scholar 

  • Barr, S. L., Larson, B. M. H., Beechey, T. J. & Scott, D. J. Assessing climate change adaptation progress in Canada’s protected areas. Can. Geog. 65, 152–165. https://doi.org/10.1111/cag.12635 (2020).

    Article 

    Google Scholar 

  • Convention on Biological Diversity. Aichi Target 11, Convention on Biological Diversity. https://www.cbd.int/aichi-targets/target/11. Accessed 14 May 2021.

  • United Nations. Climate Change Pathways. https://unfccc.int/climate-action/marrakech-partnership/reporting-and-tracking/climate_action_pathways. Accessed 12 Sept 2022.

  • Government of Canada. Canada’s nature legacy: Protecting our nature conservation/nature-legacy.html (2021).

  • Coristine, L. E. et al. Informing Canada’s commitment to biodiversity conservation: A science-based framework to help guide protected areas designation through Target 1 and beyond. Facets 3, 531–562. https://doi.org/10.1139/facets-2017-0102 (2017).

    Article 

    Google Scholar 

  • De Barros, A. E. et al. Identification of areas in Brazil that optimize areas that optimize conservation of forest carbon, Jaguars and Biodiversity. Conserv. Biol. 28, 580–593. https://doi.org/10.1111/cobi.12202 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Jantz, P., Scott, S. & Laporte, N. Carbon stock corridors to mitigate climate change and promote biodiversity in the tropics. Nat. Clim. Change 4, 138–142. https://doi.org/10.1038/nclimate2105 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Beaudrot, L. et al. Limited carbon and biodiversity co-benefits for tropical mammals and birds. Ecol. Appl. 26, 10998–11111. https://doi.org/10.1890/15-0935 (2016).

    Article 

    Google Scholar 

  • Morelli, T. L. et al. Climate-change refugia: Biodiversity in a slow lane. Front. Ecol. Environ. 18, 228–234. https://doi.org/10.1002/fee.2189 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stralberg, et al. Macrorefugia for North American trees ad songbirds: Climatic limiting factors and multi-scale topographic influences. Glob. Ecol. Biogeogr. 27, 690–703. https://doi.org/10.1111/geb.12731 (2018).

    Article 

    Google Scholar 

  • Caroll, C. & Ray, J. C. Maximizing the effectiveness of national commitments to protected area expansion for conserving biodiversity and ecosystem carbon under climate change. Glob. Chang Biol. 27, 3395–3414. https://doi.org/10.1111/gcb.15645 (2020).

    Article 

    Google Scholar 

  • Bradshaw, C. J., Warkentin, I. G. & Sodhi, N. S. Urgent preservation of boreal carbon stocks and biodiversity. Trends Ecol. Evol. 24, 541–548. https://doi.org/10.1016/j.tree.2009.03.019 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Harris, L. I. et al. The essential carbon service provided by northern peatlands. Front. Ecol. Environ. 20, 222–230 (2022).

    Article 

    Google Scholar 

  • Environment and Climate Change Canada. Canadian Environmental Sustainability Indicators: Canada’s conserved areas. environmental-indicators/conserved-areas.html (2020).

  • Office of the Auditor General of Canada. Lessen learnt from 30 years of climate change challenges and opportunities. https://www.oag-bvg.gc.ca/internet/English/att__e_43948.html#hd3l (2020).

  • Shea, T. et al. Canada’s Conservation Vision: A report of the National Advisory Panel. Government of Canada, 43 pp (2018).

  • Environment and Climate Change Canada. Pan-Canadian Approach to transforming species at risk conservation in Canada. species-at-risk-conservation.html (2018).

  • Bergerund, A. T. Caribou, wolves and man. Trends Ecol. Evol. 3, 68–72. https://doi.org/10.1016/0169-5347(88)90019-5 (1988).

    Article 

    Google Scholar 

  • Vernier, L. A. et al. Effects of natural resource development on the terrestrial biodiversity of Canadian boreal forests. Environ. Rev. 22, 457–490. https://doi.org/10.1139/er-2013-0075 (2014).

    Article 

    Google Scholar 

  • Wells, J. V., Dawson, N., Culver, N., Reid, F. A. & Slegers, S. M. The state of conservation in North America’s Borel Forest: Issues and opportunities. Front. For. Glob. Change 3, 90. https://doi.org/10.3389/ffgc.2020.00090/full (2020).

    Article 

    Google Scholar 

  • COSEWIC. COSEWIC assessment and update status report on the woodland caribou Rangifer tarandus caribou in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. xi + 98 pp. (2002).

  • COSEWIC. COSEWIC assessment and status report on the caribou Rangifer tarandus, Newfoundland population, Atlantic-Gaspésie population and Boreal population, in Canada. Committee on the Status of Endangered Wildlifein Canada. Ottawa. xxiii + 128 pp. (2014).

  • Environment and Climate Change Canada. Amended Recovery Strategy for the Woodland Caribou (Rangifer tarandus caribou), Boreal Population, in Canada. Species at Risk Act Recovery Strategy Series. Environment and Climate Change Canada, Ottawa. xiii + 143pp. (2020).

  • Environment and Climate Change Canada. Report on the Progress of Recovery Strategy Implementation for the Woodland Caribou (Rangifer tarandus caribou), Boreal population in Canada for the Period 2012–2017. Species at Risk Act Recovery Strategy Series. Environment and Climate Change Canada, Ottawa. ix + 94 (2017).

  • Hebblewhite, M. Billion dollar boreal woodland caribou and the biodiversity impacts of the global oil and gas industry. Biol. Conserv. 206, 102–111. https://doi.org/10.1016/j.biocon.2016 (2017).

    Article 

    Google Scholar 

  • Fortin, D., McLoughlin, P. D. & Hebblewhite, M. When the protection of a threatened species depends on the economy of a foreign nation. PLoS ONE 15, e0229555. https://doi.org/10.1371/journal.pone.0229555 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Drever, R. C. et al. Conservation through co-occurrence: Woodland caribou as a focal species for boreal biodiversity. Biol. Conserv. 232, 238–252. https://doi.org/10.1016/j.biocon.2019.01.026 (2019).

    Article 

    Google Scholar 

  • Government of Canada. Pan-Canadian Framework on clean growth and climate change climatechange/pan-canadian-framework.html.

  • Bradshaw, C. J. & Warkentin, I. G. Global estimates of boreal forest carbon stocks and flux. Glob. Planet Chang 128, 24–30. https://doi.org/10.1016/j.gloplacha.2015.02.004 (2015).

    ADS 
    Article 

    Google Scholar 

  • Jennings, M. D. Gap analysis: Concept, methods, recent results. Land Ecol. 5, 15–20 (2010).

    Google Scholar 

  • Environment and Climate Change Canada. Canadian Protected and Conserved Areas database. national-wildlife-areas/protected-conserved-areas-database (2019).

  • DeLuca, T. H. & Boisvenue, C. Boreal forest soil carbon: Distribution function and modelling. Forestry 85, 161–184. https://doi.org/10.1093/forestry/cps003 (2012).

    Article 

    Google Scholar 

  • Price, et al. Anticipating the consequences of climate change for Canada’s boreal forest ecosystems. Environ. Rev. 21, 322–365. https://doi.org/10.1139/er-2013-0042 (2013).

    Article 

    Google Scholar 

  • Southee, F. M., Edwards, B. A., Chetkiewicz, C. B. & O’Connor, C. M. Freshwater conservation planning in the far north of Ontario, Canada: Identifying priority watersheds for conservation of fish biodiversity in an intact boreal landscape. Facets 6, 90–117. https://doi.org/10.1139/facets-2020-0015 (2021).

    Article 

    Google Scholar 

  • Mitchell, M. G. E. et al. Identifying key ecosystem service providing areas to inform national-scale conservation planning. Environ. Res. Lett. 16, 014038. https://doi.org/10.1088/1748-9326/abc121 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Labadie, G. P. D., McLoughlin, M. H. & Fortin, D. Insect-mediated apparent competition between mammals in a boreal food web. Proc. Natl. Acad. Sci. U S A. 118, e2022892118. https://doi.org/10.1073/pnas.2022892118 (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cameron, V. & Hargreaves, A. L. Spatial distribution and conservation hotspots of mammals in Canada. Facets 5, 692–703. https://doi.org/10.1139/facets-2020-0018 (2020).

    Article 

    Google Scholar 

  • Ceballos, G. & Ehrlich, P. R. Global mammal distributions, biodiversity hotspots, and conservation. PNAS 103, 19374–19379. https://doi.org/10.1073/pnas.0609334103 (2016).

    ADS 
    Article 

    Google Scholar 

  • Anielski, M. & Wilson, S. Counting Canada’s natural capital: Assessing the real value of Canada’s boreal ecosystems. Ottawa, On: Canadian Boreal Initiative and Pembina Institute counting-canadas-natural-capital (2009).

  • Kumaraswamy, S. & Udyakumar, M. Biodiversity banking: A strategic conservation mechanism. Biodiver. Conserv. 20, 1155–1165. https://doi.org/10.1007/s10531-011-0020-5 (2011).

    Article 

    Google Scholar 

  • Garnett, S. T. et al. A spatial overview of the global importance of Indigenous lands for conservation. Nat. Sustain. 1, 369–374. https://doi.org/10.1038/s41893-018-0100-6 (2018).

    Article 

    Google Scholar 

  • Godden, L. & Cowell, S. Conservation planning and Indigenous governance in Australia’s Indigenous Protected Areas. Restor. Ecol. 24, 692–697. https://doi.org/10.1111/rec.12394 (2016).

    Article 

    Google Scholar 

  • Greg Brown, B. & Fagerholm, N. Empirical PPGIS/PGIS mapping of ecosystem services: A review and evaluation. Ecol. Ser. 13, 119–133. https://doi.org/10.1016/j.ecoser.2014.10.007 (2021).

    Article 

    Google Scholar 

  • Martin, A. E., Neave, E., Kirby, P., Drever, C. R. & Johnson, C. A. Multi-objective optimization can balance trade-offs among boreal caribou, biodiversity, and climate change objectives when conservation hotspots do not overlap. Sci. Rep. 12, 11895. https://doi.org/10.1038/s41598-022-15274-8 (2022).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • COSEWIC. Canadian Wildlife Species at Risk. Committee on the Status of Endangered Wildlife in Canada (2018).

  • Alberta Environment and Parks and Alberta Conservation Association. Status of the Arctic Grayling (Thymallus arcticus) in Alberta: Update 2015. Alberta Environment and Parks. Alberta Wildlife Status Report No. 57 (Update 2015). Edmonton, AB. 96 pp. (2015).

  • Environment and Climate Change Canada (ECCC). 2016. Range map extents, species at risk, Canada. Government of Canada. Open Government Dataset. https://open.canada.ca/data/en/dataset/d00f8e8c-40c4-435a-b790-980339ce3121.

  • Magurran, A. E. Measuring Biological Diversity 256 (Blackwell Publishing, 2004).

    Google Scholar 

  • Caissy, P., Klemet-N’Guessan, S., Jackiw, R., Eckert, C. G. & Hargreaves, A. L. High conservation priority of range-edge plant populations not matched by habitat protection or research effort. Biol. Conserv. 249, 108732 (2020).

    Article 

    Google Scholar 

  • Gaston, K. J. Rarity 201 (Chapman & Hall, 1994).

    Book 

    Google Scholar 

  • Stralberg, D. Velocity-based macrorefugia for North American ecoregions. Zenodo. https://doi.org/10.5281/zenodo.2579337 (2019).

  • Fuss, S. et al. Betting on negative emissions. Nat. Clim. Change 4, 850–853. https://doi.org/10.1038/nclimate2392 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Chen, I., Hill, J. K., Ohlemüller, R. D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026. https://doi.org/10.1126/science.1206432 (2011).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Woodall, C. W. et al. An indicator of tree migration in forests of the eastern United States. For. Ecol. Manag. 257, 1434–1444 (2009).

    Article 

    Google Scholar 

  • Iverson, L. R., Schwartz, M. W. & Prasad, A. M. How fast and far might tree species migrate in the eastern United States due to climate change? Glob. Ecol. Biogeogr. 13, 209–219 (2004).

    Article 

    Google Scholar 

  • McLachlan, J. S., Hellmann, J. J. & Schwartz, M. W. A framework for debate of assisted migration in an era of climate change. Conserv. Biol. 21, 297–302 (2007).

    Article 

    Google Scholar 

  • Sittaro, F., Paquette, A., Messier, C. & Nock, C. A. Tree range expansion in eastern North America fails to keep pace with climate warming at northern range limits. Glob. Change Biol. 23, 3292–3301. https://doi.org/10.1111/gcb.13622 (2017).

    ADS 
    Article 

    Google Scholar 

  • Ping, C. L. et al. Carbon stores and biogeochemical properties of soils under black spruce forest, Alaska. Soil Sci. Soc. Am. J. 74, 969–978. https://doi.org/10.2136/sssaj2009.0152 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Hengl, T. et al. SoilGrids250m: Global soil information based on machine learning. PLoS ONE 12, e0169748 (2017).

    Article 

    Google Scholar 

  • Chung, N. C., Miasojedow, B., Startek, M. & Gambin, A. Jaccard/Tanimoto similarity test and estimation methods for biological presence-absence data. BMC Bioinform. 29, 644. https://doi.org/10.1186/s12859-019-3118-5 (2019).

    Article 

    Google Scholar 

  • Chung, N. C., Miasojedow, B., Startek, M. & Gambin A. Jaccard: Test Similarity Between Binary Data using Jaccard/Tanimoto Coefficients. R package version 0.1.0. https://CRAN.R-project.org/package=jaccard (2018).


  • Source: Ecology - nature.com

    3Q: Why Europe is so vulnerable to heat waves

    Substantial differences in soil viral community composition within and among four Northern California habitats