in

Protection status, human disturbance, snow cover and trapping drive density of a declining wolverine population in the Canadian Rocky Mountains

  • Le Saout, S. et al. Protected areas and effective biodiversity conservation. Science 342, 803–805 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Chape, S., Harrison, J., Spalding, M. & Lysenko, I. Measuring the extent and effectiveness of protected areas as an indicator for meeting global biodiversity targets. Philos. Trans. R. Soc. B Biol. Sci. 360, 443–455 (2005).

    Article 
    CAS 

    Google Scholar 

  • Hansen, A. J. & DeFries, R. Ecological mechanisms linking protected areas to surrounding lands. Ecol. Appl. 17, 974–988 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Balme, G. A., Slotow, R. & Hunter, L. T. B. Edge effects and the impact of non-protected areas in carnivore conservation: Leopards in the Phinda-Mkhuze Complex, South Africa. Anim. Conserv. 13, 315–323 (2010).

    Article 

    Google Scholar 

  • Woodroffe, R. & Ginsberg, J. R. Edge effects and the extinction of populations inside protected areas. Science 280, 2126–2128 (1998).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Watson, J. E. M., Dudley, N., Segan, D. B. & Hockings, M. The performance and potential of protected areas. Nature 515, 67–73 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Jones, K. R. et al. One-third of global protected land is under intense human pressure. Science 360, 788–791 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Balmford, A. et al. Walk on the wild side: Estimating the global magnitude of visits to protected areas. PLoS Biol. 13, 1–6 (2015).

    Article 

    Google Scholar 

  • Larson, C. L., Reed, S. E., Merenlender, A. M. & Crooks, K. R. Effects of recreation on animals revealed as widespread through a global systematic review. PLoS ONE 11, 1–21 (2016).

    Article 

    Google Scholar 

  • Tablado, Z. & Jenni, L. Determinants of uncertainty in wildlife responses to human disturbance. Biol. Rev. 92, 216–233 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Timko, J. A. & Innes, J. L. Evaluating ecological integrity in national parks: Case studies from Canada and South Africa. Biol. Conserv. 142, 676–688 (2009).

    Article 

    Google Scholar 

  • Nagendra, H. et al. Remote sensing for conservation monitoring: Assessing protected areas, habitat extent, habitat condition, species diversity, and threats. Ecol. Indic. 33, 45–59 (2013).

    Article 

    Google Scholar 

  • Frid, A. & Dill, L. M. Human-caused disturbance stimuli as a form of predation risk. Conserv. Ecol. 6, 11 (2002).

    Google Scholar 

  • Lima, S. L. & Dill, L. M. Behavioral decisions made under the risk of predation: A review and prospectus. Can. J. Zool. 68, 619–640 (1990).

    Article 

    Google Scholar 

  • Creel, S. & Christianson, D. Relationships between direct predation and risk effects. Trends Ecol. Evol. 23, 194–201 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Williams, B. K., Nichols, J. D. & Conroy, M. J. Analysis and Management of Animal Populations (Academic Press, 2002).

    Google Scholar 

  • Royle, J. A., Chandler, R. B., Sollmann, R. & Gardner, B. Spatial Capture-Recapture (Academic Press, 2014).

    Google Scholar 

  • Steenweg, R., Hebblewhite, M., Whittington, J. & McKelvey, K. Species-specific differences in detection and occupancy probabilities help drive ability to detect trends in occupancy. Ecosphere 10, e02639 (2019).

    Article 

    Google Scholar 

  • Chen, C. et al. Global camera trap synthesis highlights the importance of protected areas in maintaining mammal diversity. Conserv. Lett. 15, 1–14 (2022).

    Article 
    CAS 

    Google Scholar 

  • Besbeas, P., Freeman, S., Morgan, B. & Catchpole, E. Integrating mark-recapture-recovery and census data to estimate animal abundance and demographic parameters. Biometrics 58, 540–547 (2002).

    Article 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Sun, C. C., Royle, J. A. & Fuller, A. K. Incorporating citizen science data in spatially explicit integrated population models. Ecology 100, 1–12 (2019).

    Article 

    Google Scholar 

  • Doran-Myers, D. et al. Density estimates for Canada lynx vary among estimation methods. Ecosphere 12, 3774 (2021).

    Article 

    Google Scholar 

  • Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 1241484 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Frey, S., Fisher, J. T., Burton, A. C. & Volpe, J. P. Investigating animal activity patterns and temporal niche partitioning using camera-trap data: Challenges and opportunities. Remote Sens. Ecol. Conserv. 3, 123–132 (2017).

    Article 

    Google Scholar 

  • Weaver, J. L., Paquet, P. C. & Ruggiero, L. F. Resilience and conservation of large carnivores in the Rocky Mountains. Conserv. Biol. 10, 964–976 (1996).

    Article 

    Google Scholar 

  • Fisher, J. T. et al. Wolverines (Gulo gulo) in a changing landscape and warming climate: A decadal synthesis of global conservation ecology research. Glob. Ecol. Conserv. 34, e02019 (2022).

    Article 

    Google Scholar 

  • Persson, J., Ericsson, G. & Segerström, P. Human caused mortality in the endangered Scandinavian wolverine population. Biol. Conserv. 142, 325–331 (2009).

    Article 

    Google Scholar 

  • Mowat, G. et al. The sustainability of wolverine trapping mortality in Southern Canada. J. Wildl. Manag. 84, 213–226 (2020).

    Article 

    Google Scholar 

  • Bowman, J., Ray, J. C., Magoun, A. J., Johnson, D. S. & Dawson, F. N. Roads, logging, and the large-mammal community of an eastern Canadian boreal forest. Can. J. Zool. 88, 454–467 (2010).

    Article 

    Google Scholar 

  • Heinemeyer, K. et al. Wolverines in winter: Indirect habitat loss and functional responses to backcountry recreation. Ecosphere 10, 2611 (2019).

    Article 

    Google Scholar 

  • Fisher, J. T. et al. Wolverines (Gulo gulo Luscus) on the Rocky Mountain slopes: Natural heterogeneity and landscape alteration as predictors of distribution. Can. J. Zool. 91, 706–716 (2013).

    Article 

    Google Scholar 

  • Magoun, A. J. et al. Integrating motion-detection cameras and hair snags for wolverine identification. J. Wildl. Manag. 75, 731–739 (2011).

    Article 

    Google Scholar 

  • Bischof, R. et al. Estimating and forecasting spatial population dynamics of apex predators using transnational genetic monitoring. Proc. Natl. Acad. Sci. U.S.A. 117, 30531–30538 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Aronsson, M. & Persson, J. Mismatch between goals and the scale of actions constrains adaptive carnivore management: The case of the wolverine in Sweden. Anim. Conserv. 20, 261–269 (2017).

    Article 

    Google Scholar 

  • Newmark, W. D. Extinction of mammal populations in Western North American National Parks. Conserv. Biol. 9, 512–526 (1995).

    Article 

    Google Scholar 

  • Barrueto, M., Sawaya, M. A. & Clevenger, A. P. Low wolverine (Gulo gulo) density in a national park complex of the Canadian Rocky Mountains. Can. J. Zool. 98, 287–298 (2020).

    Article 

    Google Scholar 

  • Heim, N., Fisher, J. T., Clevenger, A., Paczkowski, J. & Volpe, J. Cumulative effects of climate and landscape change drive spatial distribution of Rocky Mountain wolverine (Gulo gulo L.). Ecol. Evol. 7, 8903–8914 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Steenweg, R. et al. Camera-based occupancy monitoring at large scales: Power to detect trends in grizzly bears across the Canadian Rockies. Biol. Conserv. 201, 192–200 (2016).

    Article 

    Google Scholar 

  • Tourani, M., Dupont, P., Nawaz, M. A. & Bischof, R. Multiple observation processes in spatial capture–recapture models: How much do we gain? Ecology 101, 1–8 (2020).

    Article 

    Google Scholar 

  • Kukka, P. M., Jung, T. S. & Schmiegelow, F. K. A. Spatiotemporal patterns of wolverine (Gulo gulo) harvest: The potential role of refugia in a quota-free system. Eur. J. Wildl. Res. 68, 1566 (2022).

    Article 

    Google Scholar 

  • Krebs, J. et al. Synthesis of survival rates and causes of mortality in North American wolverines. J. Wildl. Manag. 68, 493–502 (2004).

    Article 

    Google Scholar 

  • Stewart, F. E. C. et al. Wolverine behavior varies spatially with anthropogenic footprint: Implications for conservation and inferences about declines. Ecol. Evol. 6, 1493–1503 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sawaya, M. A., Clevenger, A. P. & Schwartz, M. K. Demographic fragmentation of a protected wolverine population bisected by a major transportation corridor. Biol. Conserv. 236, 616–625 (2019).

    Article 

    Google Scholar 

  • Gooliaff, T. The Sustainable Annual Take of Canada lynx in the Okanagan Region of British Columbia (2021).

  • Clevenger, A. P. Mitigating highways for a ghost: Data collection challenges and implications for managing wolverines and transportation corridors. Northwest Sci. 87, 257–264 (2013).

    Article 

    Google Scholar 

  • Kindsvater, H. K. et al. Overcoming the data crisis in biodiversity conservation. Trends Ecol. Evol. 33, 676–688 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Gervasi, V. et al. Compensatory immigration counteracts contrasting conservation strategies of wolverines (Gulo gulo) within Scandinavia. Biol. Conserv. 191, 632–639 (2015).

    Article 

    Google Scholar 

  • Rich, L. N. et al. Assessing global patterns in mammalian carnivore occupancy and richness by integrating local camera trap surveys. Glob. Ecol. Biogeogr. 26, 918–929 (2017).

    Article 

    Google Scholar 

  • Decesare, N. J. et al. The role of translocation in recovery of Woodland Caribou populations. Conserv. Biol. 25, 365–373 (2010).

    PubMed 

    Google Scholar 

  • Morris, W. & Doak, D. Quantitative Conservation Biology (Sinauer Associates, 2002).

    Google Scholar 

  • Squires, J. R. et al. Combining resource selection and movement behavior to predict corridors for Canada lynx at their southern range periphery. Biol. Conserv. 157, 187–195 (2013).

    Article 

    Google Scholar 

  • Hebblewhite, M. & Whittington, J. Wolves without borders: Transboundary survival of wolves in Banff National Park over three decades. Glob. Ecol. Conserv. 24, e01293 (2020).

    Article 

    Google Scholar 

  • Ministry of Forests Lands Natural Resource Operations and Rural Development. 2020–2022 Hunting and Trapping Regulations Synopsis, 96 (2020) https://www2.gov.bc.ca/assets/gov/sports-recreation-arts-and-culture/outdoor-recreation/fishing-and-hunting/hunting/regulations/2020-2022/hunting-trapping-synopsis-2020-2022.pdf (Accessed 15 Dec 2021).

  • Persson, J., Landa, A., Andersen, R. & Segerström, P. Reproductive characteristics of female wolverines (Gulo gulo) in Scandinavia. J. Mammal. 87, 75–79 (2006).

    Article 

    Google Scholar 

  • Persson, J. Female wolverine (Gulo gulo) reproduction: Reproductive costs and winter food availability. Can. J. Zool. 83, 1453–1459 (2005).

    Article 

    Google Scholar 

  • Persson, J., Rauset, G. R. & Chapron, G. Paying for an endangered predator leads to population recovery. Conserv. Lett. 8, 345–350 (2015).

    Article 

    Google Scholar 

  • Seip, D. R., Johnson, C. J. & Watts, G. S. Displacement of mountain caribou from winter habitat by snowmobiles. J. Wildl. Manag. 71, 1539–1544 (2007).

    Article 

    Google Scholar 

  • Arlettaz, R. et al. Disturbance of wildlife by outdoor winter recreation: Allostatic stress response and altered activity-energy budgets. Ecol. Appl. 25, 1197–1212 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Olson, L. E., Squires, J. R., Roberts, E. K., Ivan, J. S. & Hebblewhite, M. Sharing the same slope: Behavioral responses of a threatened mesocarnivore to motorized and nonmotorized winter recreation. Ecol. Evol. 8, 8555–8572 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ciuti, S. et al. Effects of humans on behaviour of wildlife exceed those of natural predators in a landscape of fear. PLoS ONE 7, e50611 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Phillips, G. E. & Alldredge, A. W. Reproductive success of elk following disturbance by humans during calving season. J. Wildl. Manag. 64, 521 (2000).

    Article 

    Google Scholar 

  • Strasser, E. H. & Heath, J. A. Reproductive failure of a human-tolerant species, the American kestrel, is associated with stress and human disturbance. J. Appl. Ecol. 50, 912–919 (2013).

    Article 

    Google Scholar 

  • Rauset, G. R., Low, M. & Persson, J. Reproductive patterns result from age-related sensitivity to resources and reproductive costs in a mammalian carnivore. Ecology 96, 3153–3164 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Inman, R. M., Magoun, A. J., Persson, J. & Mattisson, J. The wolverine’s niche: Linking reproductive chronology, caching, competition, and climate. J. Mammal. 93, 634–644 (2012).

    Article 

    Google Scholar 

  • Persson, J., Willebrand, T., Landa, A., Andersen, R. & Segerström, P. The role of intraspecific predation in the survival of juvenile wolverines Gulo gulo. Wildl. Biol. 9, 21–28 (2003).

    Article 

    Google Scholar 

  • Krebs, J., Lofroth, E. C. & Parfitt, I. Multiscale habitat use by wolverines in British Columbia, Canada. J. Wildl. Manag. 71, 2180–2192 (2007).

    Article 

    Google Scholar 

  • Corradini, A. et al. Effects of cumulated outdoor activity on wildlife habitat use. Biol. Conserv. 253, 108818 (2021).

    Article 

    Google Scholar 

  • Goodbody, T. R. H. et al. Mapping recreation and tourism use across grizzly bear recovery areas using social network data and maximum entropy modelling. Ecol. Modell. 440, 109377 (2021).

    Article 

    Google Scholar 

  • May, R., Landa, A., Van Dijk, J., Linnell, J. D. C. & Andersen, R. Impact of infrastructure on habitat selection of wolverines Gulo gulo. Wildl. Biol. 12, 285–295 (2006).

    Article 

    Google Scholar 

  • Scrafford, M. A., Avgar, T., Heeres, R. & Boyce, M. S. Roads elicit negative movement and habitat-selection responses by wolverines (Gulo gulo luscus). Behav. Ecol. 29, 534–542 (2018).

    Article 

    Google Scholar 

  • Li, X., Zhou, Y., Zhao, M. & Zhao, X. A harmonized global nighttime light dataset 1992–2018. Sci. Data 7, 1–9 (2020).

    Article 

    Google Scholar 

  • Lofroth, E. C., Krebs, J. A., Harrower, W. L. & Lewis, D. Food habits of wolverine Gulo gulo in montane ecosystems of British Columbia, Canada. Wildl. Biol. 13, 31–37 (2007).

    Article 

    Google Scholar 

  • Hebblewhite, M., White, C. A. & Musiani, M. Revisiting extinction in national parks: Mountain Caribou in Banff. Conserv. Biol. 24, 341–344 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Poole, K. G. Kootenay Region Mountain Goat Population Assessment 2013–2015 (2015).

  • Wasstrom, H. E., Cottell, C., Lofroth, E. C. & Larsen, K. W. Has the porcupine population waned in British Columbia? Trends in questionnaires and road-mortality data. Northwest. Nat. 101, 168–179 (2020).

    Article 

    Google Scholar 

  • Hunt, W. A. Banff National Park State of the Park Report—Resource Conservation Technical Summaries 2008 to 2017 (2018).

  • Kuzyk, G. et al. Moose population dynamics during 20 years of declining harvest in British Columbia. Alces 54, 101–119 (2018).

    Google Scholar 

  • Kortello, A., Hausleitner, D. & Mowat, G. Mechanisms influencing the winter distribution of wolverine Gulo gulo Luscus in the southern Columbia Mountains, Canada. Wildl. Biol. 2019, 480 (2019).

    Article 

    Google Scholar 

  • Copeland, J. P. et al. The bioclimatic envelope of the wolverine (Gulo gulo): Do climatic constraints limit its geographic distribution? Can. J. Zool. 88, 233–246 (2010).

    Article 

    Google Scholar 

  • Magoun, A. J., Robards, M. D., Packila, M. L. & Glass, T. W. Detecting snow at the den-site scale in wolverine denning habitat. Wildl. Soc. Bull. 41, 381–387 (2017).

    Article 

    Google Scholar 

  • Webb, S. M. et al. Distribution of female wolverines relative to snow cover, Alberta, Canada. J. Wildl. Manag. 80, 1461–1470 (2016).

    Article 

    Google Scholar 

  • SARA Species at Risk Act. Order amending schedule 1 to the species at risk act. SOR/2018-112. Canada Gazette 152 (12), 18 June 2018. (2018) www.canada.ca/en/environment-%0Aclimate-change/services/species-risk-public-registry/%0Aorders/amend-schedule-1-volume-152-number-12-june-2018.%0Ahtml (Accessed on 15 December 2021).

  • Holland, W. D. & Coen, G. M. Ecological (biophysical) land classification of Banff and Jasper National Parks (1983).

  • open.canada.ca. https://open.canada.ca (Accessed on 15 December 2021).

  • den Hartog, J. & Reijns, R. I3S Pattern+ (2016).

  • Greenberg, S. Timelapse: An Image Classifer for Camera Traps (2020).

  • Tobler, M. Camera Base Version (2007).

  • Whittington, J., Hebblewhite, M. & Chandler, R. B. Generalized spatial mark–resight models with an application to grizzly bears. J. Appl. Ecol. 55, 157–168 (2018).

    Article 

    Google Scholar 

  • Gowan, T. A., Crum, N. J. & Roberts, J. J. An open spatial capture–recapture model for estimating density, movement, and population dynamics from line-transect surveys. Ecol. Evol. 11, 7354–7365 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Royle, J. A., Fuller, A. K. & Sutherland, C. Spatial capture–recapture models allowing Markovian transience or dispersal. Popul. Ecol. 58, 53–62 (2016).

    Article 

    Google Scholar 

  • Milleret, C. et al. Estimating abundance with interruptions in data collection using open population spatial capture–recapture models. Ecosphere 11, 1–14 (2020).

    Article 

    Google Scholar 

  • Royle, J. A., Magoun, A. J., Gardner, B., Valkenburg, P. & Lowell, R. E. Density estimation in a wolverine population using spatial capture-recapture models. J. Wildl. Manag. 75, 604–611 (2011).

    Article 

    Google Scholar 

  • Royle, J. A., Chandler, R. B., Sun, C. C. & Fuller, A. K. Reply to efford on ‘Integrating resource selection information with spatial capture–recapture’. Methods Ecol. Evol. 5, 603–605 (2014).

    Article 

    Google Scholar 

  • Kendall, K. C. et al. Using bear rub data and spatial capture-recapture models to estimate trend in a brown bear population. Sci. Rep. 9, 5 (2019).

    Article 

    Google Scholar 

  • Royle, J. A. & Young, K. V. A hierarchical model for spatial capture-recapture data. Ecology 89, 2281–2289 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Gardner, B., Sollmann, R., Kumar, N. S., Jathanna, D. & Karanth, K. U. State space and movement specification in open population spatial capture–recapture models. Ecol. Evol. 8, 10336–10344 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Watanabe, S. Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory. J. Mach. Learn. Res. 11, 3571–3594 (2010).

    MathSciNet 
    MATH 

    Google Scholar 

  • Royle, J. A. & Kéry, M. A Bayesian state-space formulation of dynamic occupancy models. Ecology 88, 1813–1823 (2007).

    Article 
    PubMed 

    Google Scholar 

  • R Core Team. R: A Language and Environment for Statistical Computing (2022) https://www.r-project.org/ (Accessed on 20 June 2022).

  • de Valpine, P. et al. Programming with models: Writing statistical algorithms for general model structures with NIMBLE. J. Comput. Graph. Stat. 26, 403–413 (2017).

    Article 
    MathSciNet 

    Google Scholar 

  • Barrueto, M., Forshner, A., Whittington, J., Clevenger, A. P. & Musiani, M. Data from: Protection status, human disturbance, snow cover and trapping drive density of a declining wolverine population in the Canadian Rocky Mountains. Dryad. https://doi.org/10.5061/dryad.z34tmpghh (2022).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Contrasting sea ice conditions shape microbial food webs in Hudson Bay (Canadian Arctic)

    Doubling down on sustainability innovation in Kendall Square