Courtillot, V. E. & Renne, P. R. On the ages of flood basalt events. C. R. Geosci. 335, 113–140 (2003).
Google Scholar
Campbell, I., Czamanske, G., Fedorenko, V., Hill, R. & Stepanov, V. Synchronism of the Siberian Traps and the Permian–Triassic boundary. Science 258, 1760–1763 (1992).
Google Scholar
Burgess, S. D. & Bowring, S. A. High-precision geochronology confirms voluminous magmatism before, during, and after Earth’s most severe extinction. Sci. Adv. 1, e1500470 (2015).
Google Scholar
Payne, J. L. & Clapham, M. E. End-Permian mass extinction in the oceans: an ancient analog for the twenty-first century? Annu. Rev. Earth Planet. Sci. 40, 89–111 (2012).
Google Scholar
Schneebeli-Hermann, E. et al. Evidence for atmospheric carbon injection during the end-Permian extinction. Geology 41, 579–582 (2013).
Google Scholar
Lee, C. & Lackey, J. Global continental arc flare-ups and their relation to long-term greenhouse conditions. Elements 11, 125–130 (2015).
Google Scholar
McKenzie, N. R. et al. Continental arc volcanism as the principal driver of icehouse-greenhouse variability. Science 352, 444–447 (2016).
Google Scholar
Ratschbacher, B. C., Paterson, S. R. & Fischer, T. P. Spatial and depth‐dependent variations in magma volume addition and addition rates to continental arcs: application to global CO2 fluxes since 750 Ma. Geochem. Geophys. Geosyst. 20, 2997–3018 (2019).
Google Scholar
Soreghan, G. S., Soreghan, M. J. & Heavens, N. G. Explosive volcanism as a key driver of the late Paleozoic ice age. Geology 47, 600–604 (2019).
Google Scholar
Jones, M. T., Sparks, R. S. J. & Valdes, P. J. The climatic impact of supervolcanic ash blankets. Clim. Dyn. 29, 553–564 (2007).
Google Scholar
DeCelles, P. G., Ducea, M. N., Kapp, P. & Zandt, G. Cyclicity in cordilleran orogenic systems. Nat. Geosci. 2, 251–257 (2009).
Google Scholar
Ducea, M. N., Paterson, S. R. & DeCelles, P. G. High-volume magmatic events in subduction systems. Elements 11, 99–104 (2015).
Google Scholar
Milan, L. A., Daczko, N. R. & Clarke, G. L. Cordillera Zealandia: a Mesozoic arc flare-up on the palaeo-Pacific Gondwana Margin. Sci. Rep. 7, 261 (2017).
Google Scholar
Gravley, D. M., Deering, C. D., Leonard, G. S. & Rowland, J. V. Ignimbrite flare-ups and their drivers: a New Zealand perspective. Earth Sci. Rev. 162, 65–82 (2016).
Google Scholar
de Silva, S. L., Riggs, N. R. & Barth, A. P. Quickening the pulse: fractal tempos in continental arc magmatism. Elements 11, 113–118 (2015).
Google Scholar
Attia, S., Cottle, J. M. & Paterson, S. R. Erupted zircon record of continental crust formation during mantle driven arc flare-ups. Geology 48, 446–451 (2020).
Google Scholar
Chisholm, E.-K. I., Simpson, C. & Blevin, P. New SHRIMP U–Pb Zircon Ages from the New England Orogen, New South Wales: July 2010–June 2012 (Geoscience Australia, 2014).
McPhie, J. Evolution of a non-resurgent cauldron: the Late Permian Coombadjha volcanic complex, northeastern New South Wales, Australia. Geol. Mag. 123, 257–277 (1986).
Google Scholar
Lackie, M. The magnetic fabric of the Late Permian Dundee Ignimbrite, Dundee, NSW. Explor. Geophys. 19, 481–488 (1988).
Google Scholar
Stewart, A. Facies in an Upper Permian volcanic succession, Emmaville Volcanics, Deepwater, northeastern New South Wales. Aust. J. Earth Sci. 48, 929–942 (2001).
Google Scholar
Milan, L. A. et al. A new reconstruction for Permian East Gondwana based on zircon data from ophiolite of the East Australian Great Serpentinite Belt. Geophys. Res. Lett. 48, e2020GL090293 (2021).
Google Scholar
Rosenbaum, G. The Tasmanides: Phanerozoic tectonic evolution of eastern Australia. Annu. Rev. Earth Planet. Sci. 46, 291–325 (2018).
Google Scholar
Shaw, S., Flood, R. & Pearson, N. The New England Batholith of eastern Australia: evidence of silicic magma mixing from zircon 176Hf/177Hf ratios. Lithos 126, 115–126 (2011).
Google Scholar
Kohn, B. et al. Shaping the Australian crust over the last 300 million years: insights from fission track thermotectonic imaging and denudation studies of key terranes. Aust. J. Earth Sci. 49, 697–717 (2002).
Google Scholar
Metcalfe, I., Crowley, J., Nicoll, R. & Schmitz, M. High-precision U–Pb CA-TIMS calibration of Middle Permian to Lower Triassic sequences, mass extinction and extreme climate-change in eastern Australian Gondwana. Gondwana Res. 28, 61–81 (2015).
Google Scholar
Laurie, J. et al. Calibrating the Middle and Late Permian palynostratigraphy of Australia to the geologic time-scale via U–Pb zircon CA-IDTIMS dating. Aust. J. Earth Sci. 63, 701–730 (2016).
Google Scholar
Creech, M. Tuffaceous deposition in the Newcastle Coal Measures: challenging existing concepts of peat formation in the Sydney Basin, New South Wales, Australia. Int. J. Coal Geol. 51, 185–214 (2002).
Google Scholar
Vajda, V. et al. End-Permian (252 Mya) deforestation, wildfires and flooding—an ancient biotic crisis with lessons for the present. Earth Planet. Sci. Lett. 529, 115875 (2020).
Google Scholar
Frank, T. D. et al. Pace, magnitude, and nature of terrestrial climate change through the end-Permian extinction in southeastern Gondwana. Geology, 49, 1089–1095 (2021).
Grevenitz, P., Carr, P. & Hutton, A. Origin, alteration and geochemical correlation of Late Permian airfall tuffs in coal measures, Sydney Basin, Australia. Int. J. Coal Geol. 55, 27–46 (2003).
Google Scholar
Phillips, L. et al. U–Pb geochronology and palynology from Lopingian (Upper Permian) coal measure strata of the Galilee Basin, Queensland, Australia. Aust. J. Earth Sci. 65, 153–173 (2018).
Google Scholar
Siégel, C., Bryan, S., Allen, C., Gust, D. & Purdy, D. Crustal evolution in the New England Orogen, Australia: repeated igneous activity and scale of magmatism govern the composition and isotopic character of the continental crust. J. Petrol., 61, 1–28 (2020).
Wang, X. et al. Convergent continental margin volcanic source for ash beds at the Permian–Triassic boundary, South China: constraints from trace elements and Hf-isotopes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 519, 154–165 (2019).
Google Scholar
Nelson, D. & Cottle, J. Tracking voluminous Permian volcanism of the Choiyoi Province into central Antarctica. Lithosphere 11, 386–398 (2019).
Google Scholar
He, B., Zhong, Y.-T., Xu, Y.-G. & Li, X.-H. Triggers of Permo-Triassic boundary mass extinction in South China: the Siberian Traps or Paleo-Tethys ignimbrite flare-up? Lithos 204, 258–267 (2014).
Google Scholar
Cope, T. Phanerozoic magmatic tempos of North China. Earth Planet. Sci. Lett. 468, 1–10 (2017).
Google Scholar
Sun, Y. et al. Lethally hot temperatures during the Early Triassic greenhouse. Science 338, 366–370 (2012).
Google Scholar
Jin, Y. et al. Pattern of marine mass extinction near the Permian–Triassic boundary in South China. Science 289, 432–436 (2000).
Google Scholar
Song, H., Wignall, P. B., Tong, J. & Yin, H. Two pulses of extinction during the Permian–Triassic crisis. Nat. Geosci. 6, 52–56 (2013).
Google Scholar
Ramezani, J. & Bowring, S. A. Advances in numerical calibration of the Permian timescale based on radioisotopic geochronology. Geol. Soc. Spec. Publ. 450, 51–60 (2018).
Google Scholar
Joachimski, M. M. et al. Climate warming in the latest Permian and the Permian–Triassic mass extinction. Geology 40, 195–198 (2012).
Google Scholar
Alroy, J. et al. Phanerozoic trends in the global diversity of marine invertebrates. Science 321, 97–100 (2008).
Google Scholar
Mundil, R., Ludwig, K. R., Metcalfe, I. & Renne, P. R. Age and timing of the Permian mass extinctions: U/Pb dating of closed-system zircons. Science 305, 1760–1763 (2004).
Google Scholar
Chen, B. et al. Permian ice volume and palaeoclimate history: oxygen isotope proxies revisited. Gondwana Res. 24, 77–89 (2013).
Google Scholar
Shen, S. Z. et al. High‐resolution Lopingian (Late Permian) timescale of South China. Geol. J. 45, 122–134 (2010).
Google Scholar
Shellnutt, J. G., Denyszyn, S. W. & Mundil, R. Precise age determination of mafic and felsic intrusive rocks from the Permian Emeishan large igneous province (SW China). Gondwana Res. 22, 118–126 (2012).
Google Scholar
Fielding, C. R. et al. Sedimentology of the continental end-Permian extinction event in the Sydney Basin, eastern Australia. Sedimentology 68, 30–62 (2021).
Google Scholar
Fielding, C. R. et al. Age and pattern of the southern high-latitude continental end-Permian extinction constrained by multiproxy analysis. Nat. Commun. 10, 1–12 (2019).
Google Scholar
Liu, Z. et al. Osmium-isotope evidence for volcanism across the Wuchiapingian–Changhsingian boundary interval. Chem. Geol. 529, 119313 (2019).
Google Scholar
Cheng, C. et al. Permian carbon isotope and clay mineral records from the Xikou section, Zhen’an, Shaanxi Province, central China: climatological implications for the easternmost Paleo-Tethys. Palaeogeogr. Palaeoclimatol. Palaeoecol. 514, 407–422 (2019).
Google Scholar
Gastaldo, R. A. et al. The base of the Lystrosaurus Assemblage Zone, Karoo Basin, predates the end-Permian marine extinction. Nat. Commun. 11, 1–8 (2020).
Google Scholar
Retallack, G. J. et al. Multiple Early Triassic greenhouse crises impeded recovery from Late Permian mass extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 308, 233–251 (2011).
Google Scholar
Mays, C. et al. Refined Permian–Triassic floristic timeline reveals early collapse and delayed recovery of south polar terrestrial ecosystems. GSA Bull. 132, 1489–1513 (2020).
Google Scholar
Yugan, J., Jing, Z. & Qinghua, S. Two Phases of the End-Permian Mass Extinction. In Pangea: Global Environments and Resources — Memoir, 17, 813-822 (1994).
Williams, M. L., Jones, B. G. & Carr, P. F. The interplay between massive volcanism and the local environment: geochemistry of the Late Permian mass extinction across the Sydney Basin, Australia. Gondwana Res. 51, 149–169 (2017).
Google Scholar
van der Boon, A. et al. Exploring a link between the Middle Eocene Climatic Optimum and Neotethys continental arc flare-up. Clim. Past 17, 229–239 (2021).
Google Scholar
Metcalfe, I. Tectonic evolution of Sundaland. Bull. Geol. Soc. Malays. 63, 27–60 (2017).
Google Scholar
Maravelis, A. G. et al. Re-assessing the Upper Permian stratigraphic succession of the Northern Sydney Basin, Australia, by CA-IDTIMS. Geosciences 10, 474 (2020).
Google Scholar
Voice, P. J., Kowalewski, M. & Eriksson, K. A. Quantifying the timing and rate of crustal evolution: global compilation of radiometrically dated detrital zircon grains. J. Geol. 119, 109–126 (2011).
Google Scholar
Watson, E. B., Wark, D. A. & Thomas, J. B. Crystallization thermometers for zircon and rutile. Contrib. Mineral. Petrol. 151, 413–433 (2006).
Google Scholar
Sláma, J. et al. Plešovice zircon—a new natural reference material for U–Pb and Hf isotopic microanalysis. Chem. Geol. 249, 1–35 (2008).
Google Scholar
Wiedenbeck, M. et al. Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses. Geostand. Newsl. 19, 1–23 (1995).
Google Scholar
Mattinson, J. M. Zircon U–Pb chemical abrasion (“CA-TIMS”) method: combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. Chem. Geol. 220, 47–66 (2005).
Google Scholar
Krogh, T. E. A low contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determination, Geochim. Cosmochim. Acta 37, 485–494 (1973).
Google Scholar
Gerstenberger, H. & Haase, G. A highly effective emitter substance for mass spectrometric Pb isotope ratio determinations. Chem. Geol. 136, 309–312 (1997).
Google Scholar
Schmitz, M. D. & Schoene, B. Derivation of isotope ratios, errors, and error correlations for U–Pb geochronology using 205Pb-235U-(233U)-spiked isotope dilution thermal ionization mass spectrometric data. Geochem. Geophys. Geosyst. 8, https://doi.org/10.1029/2006gc001492 (2007).
Condon, D. J., Schoene, B., McLean, N. M., Bowring, S. A. & Parrish, R. R. Metrology and traceability of U–Pb isotope dilution geochronology (EARTHTIME tracer calibration part I). Geochim. Cosmochim. Acta 164, 464–480 (2015).
Google Scholar
Jaffey, A. H., Flynn, K. F., Glendenin, L. E., Bentley, W. C. & Essling, A. M. Precision measurement of half-lives and specific activities of 235U and 238U. Phys. Rev. C 4, 1889–1906 (1971).
Google Scholar
Hiess, J., Condon, D. J., McLean, N. & Noble, S. R. 238U/235U systematics in terrestrial uranium-bearing minerals. Science 335, 1610–1614 (2012).
Google Scholar
Crowley, J. L., Schoene, B. & Bowring, S. A. U–Pb dating of zircon in the Bishop Tuff at the millennial scale. Geology 35, 1123–1126 (2007).
Google Scholar
Ludwig, K. R. User’s manual for Isoplot 3.00 (Berkley Geochronology Center, 2003).
Offenburg, A. C. & Pogson, D. J. Geological Map of New England 1:500,000 (Geological Survey of New South Wales, 1973).
Cranfield, L. C., Hutton, L. J. & Green, P. M. Geological Map of Ipswich 1:100,000 (Geological Survey of Queensland, 1978).
Shaw, S. E. & Flood, R. H. The New England Batholith, eastern Australia: geochemical variations in time and space. J. Geophys. Res. Solid Earth 86, 10530–10544 (1981).
Google Scholar
Barnes, R. G., Brown, R. E., Brownlow, J. W. & Stroud, W. J. Late Permian volcanics in New England. Q. Notes Geol. Surv. N. South Wales 84, 1–36 (1991).
Finlayson, D. M. & Collins, C. D. N. Lithospheric velocity structures under the southern New England Orogen: evidence for underplating at the Tasman Sea margin. Aust. J. Earth Sci. 40, 141–153 (1993).
Google Scholar
Timothy, C., Geoffrey, L. C., Nathan, R. D., Sandra, P. & Adrianna, R. Orthopyroxene–omphacite- and garnet–omphacite-bearing magmatic assemblages, Breaksea Orthogneiss, New Zealand: oxidation state controlled by high-P oxide fractionation. Lithos 216–217, 1–16 (2015).
Chapman, T., Clarke, G. L. & Daczko, N. R. Crustal differentiation in a thickened arc—evaluating depth dependences. J. Petrol. 57, 595–620 (2016).
Google Scholar
Jagoutz, O. & Behn, M. D. Foundering of lower island-arc crust as an explanation for the origin of the continental Moho. Nature 504, 131–134 (2013).
Google Scholar
Chapman, J. B., Ducea, M. N., DeCelles, P. G. & Profeta, L. Tracking changes in crustal thickness during orogenic evolution with Sr/Y: an example from the North American Cordillera. Geology 43, 919–922 (2015).
Google Scholar
Bryant, C. J. A Compendium of Granites of the Southern New England Orogen, Eastern Australia (Geological Survey of New South Wales, 2017).
Phillips, G., Landenberger, B. & Belousova, E. A. Building the New England Batholith, eastern Australia—linking granite petrogenesis with geodynamic setting using Hf isotopes in zircon. Lithos 122, 1–12 (2011).
Google Scholar
Kemp, A., Hawkesworth, C., Collins, W., Gray, C. & Blevin, P. Isotopic evidence for rapid continental growth in an extensional accretionary orogen: the Tasmanides, eastern Australia. Earth Planet. Sci. Lett. 284, 455–466 (2009).
Google Scholar
Anderson, J. R., Fraser, G. L., McLennan, S. M. & Lewis, C. J. A U–Pb Geochronology Compilation for Northern Australia Report No. 2017/22 (Geoscience Australia, 2017).
Belousova, E. A., Griffin, W. L. & O’Reilly, S. Y. Zircon crystal morphology, trace element signatures and Hf isotope composition as a tool for petrogenetic modelling: examples from eastern Australian granitoids. J. Petrol. 47, 329–353 (2005).
Google Scholar
Bodorkos, S. et al. U–Pb Ages from the Central Lachlan Orogen and New England Orogen, New South Wales Report No. 2016/21 (Geoscience Australia, 2016).
Cawood, P. A., Pisarevsky, S. A. & Leitch, E. C. Unraveling the New England orocline, east Gondwana accretionary margin. Tectonics 30, 1–15 (2011).
Chisholm, E. I., Blevin, P. L. & Simpson, C. J. New SHRIMP U–Pb Zircon Ages from the New England Orogen, New South Wales: July 2012–June 2014 Report No. 2014/13 (Geoscience Australia, 2014).
Chisholm, E. I., Blevin, P. L. & Simpson, C. J. New SHRIMP U–Pb Zircon Ages from the New England Orogen, New South Wales: July 2010–June 2012 Report No. 2014/13 (Geoscience Australia, 2014).
Cross, A. & Blevin, P. L. Summary of Results for the Joint GSNSW–GA Geochronology Project Report No. GS2013/0426 (Geoscience Australia, 2013).
Craven, S. J., Daczko, N. R. & Halpin, J. A. Thermal gradient and timing of high-T–low-P metamorphism in the Wongwibinda Metamorphic Complex, southern New England Orogen, Australia. J. Metamorph. Geol. 30, 3–20 (2012).
Google Scholar
Black, L. P. U–Pb Zircon Ages Obtained During 2006/07 for NSW Geological Survey Projects (Geoscience Australia, 2007).
Rosenbaum, G., Li, P. & Rubatto, D. The contorted New England Orogen (eastern Australia): new evidence from U–Pb geochronology of early Permian granitoids. Tectonics 31, https://doi.org/10.1029/2011tc002960 (2012).
Walthenberg, K., Blevin, P. L., Bull, K. F., Cronin, D. E. & Armistead, S. E. New SHRIMP U–Pb Zircon Ages from the Lachland Orogen and the New England Orogen, New South Wales: Mineral Systems Projects, July 2015–June 2016 Report No. 2016/28 (Geoscience Australia, 2016).
Walthenberg, K., Blevin, P. L., Bodorkos, S. & Cronin, D. E. New SHRIMP U–Pb Ages from the New England Orogen, New South Wales: July 2014–June 2015 Report No. 2015/28 (Geoscience Australia, 2015).
Jeon, H., Williams, I. S. & Chappell, B. W. Magma to mud to magma: rapid crustal recycling by Permian granite magmatism near the eastern Gondwana margin. Earth Planet. Sci. Lett. 319, 104–117 (2012).
Google Scholar
Source: Ecology - nature.com