in

Pyrogenic carbon decomposition critical to resolving fire’s role in the Earth system

  • Van Marle, M. J. E. et al. Historic global biomass burning emissions for CMIP6 (BB4CMIP) based on merging satellite observations with proxies and fire models (1750–2015). Geosci. Model Dev. 10, 3329–3357 (2017).

    Google Scholar 

  • Erb, K. H. et al. Unexpectedly large impact of forest management and grazing on global vegetation biomass. Nature 553, 73–76 (2018).

    Google Scholar 

  • Cook-Patton, S. C. et al. Mapping carbon accumulation potential from global natural forest regrowth. Nature 585, 545–550 (2020).

    Google Scholar 

  • Bastin, J. F. et al. The global tree restoration potential. Science 365, 76–79 (2019).

    Google Scholar 

  • Bowman, D. M. J. S. et al. Fire in the Earth system. Science 324, 481–485 (2009).

    Google Scholar 

  • Archibald, S. et al. Biological and geophysical feedbacks with fire in the Earth system. Environ. Res. Lett. 13, 033003 (2018).

    Google Scholar 

  • Mills, B. J. W., Belcher, C. M., Lenton, T. M. & Newton, R. J. A modeling case for high atmospheric oxygen concentrations during the Mesozoic and Cenozoic. Geology 44, 1023–1026 (2016).

    Google Scholar 

  • Lenton, T. M. in Fire Phenomena and the Earth System: An Interdisciplinary Guide to Fire Science (ed. Belcher, C. M.) 298–308 (Wiley, 2013).

  • Pechony, O. & Shindell, D. T. Driving forces of global wildfires over the past millennium and the forthcoming century. Proc. Natl Acad. Sci. USA 107, 19167–19170 (2010).

    Google Scholar 

  • Marlon, J. R. et al. Reconstructions of biomass burning from sediment-charcoal records to improve data-model comparisons. Biogeosciences 13, 3225–3244 (2016).

    Google Scholar 

  • Archibald, S., Staver, A. C. & Levin, S. A. Evolution of human-driven fire regimes in Africa.Proc. Natl Acad. Sci. USA 109, 847–852 (2012).

    Google Scholar 

  • Santín, C. et al. Towards a global assessment of pyrogenic carbon from vegetation fires. Global Change Biol. 22, 76–91 (2016).

    Google Scholar 

  • Jones, M. W., Santín, C., van der Werf, G. R. & Doerr, S. H. Global fire emissions buffered by the production of pyrogenic carbon. Nat. Geosci. 12, 742–747 (2019).

    Google Scholar 

  • Bird, M. I., Wynn, J. G., Saiz, G., Wurster, C. M. & McBeath, A. The pyrogenic carbon cycle. Annu. Rev. Earth Planet. Sci. 43, 273–298 (2015).

    Google Scholar 

  • Hammes, K. & Abiven, S. in Fire Phenomena and the Earth System: An Interdisciplinary Guide to Fire Science (ed. Belcher, C. M.) 157–176 (Wiley, 2013).

  • Schmidt, M. W. I. et al. Persistence of soil organic matter as an ecosystem property. Nature 478, 49–56 (2011).

    Google Scholar 

  • Lavallee, J. M. et al. Selective preservation of pyrogenic carbon across soil organic matter fractions and its influence on calculations of carbon mean residence times. Geoderma 354, 113866 (2019).

    Google Scholar 

  • Coppola, A. I. et al. Global-scale evidence for the refractory nature of riverine black carbon. Nat. Geosci. 11, 584–588 (2018).

    Google Scholar 

  • Kuzyakov, Y., Bogomolova, I. & Glaser, B. Biochar stability in soil: decomposition during eight years and transformation as assessed by compound-specific 14C analysis. Soil Biol. Biochem. 70, 229–236 (2014).

    Google Scholar 

  • Singh, B. P., Cowie, A. L. & Smernik, R. J. Biochar carbon stability in a clayey soil as a function of feedstock and pyrolysis temperature. Environ. Sci. Technol. 46, 11770–11778 (2012).

    Google Scholar 

  • Masiello, C. A. & Druffel, E. R. M. Black carbon in deep-sea sediments. Science 280, 1911–1913 (1998).

    Google Scholar 

  • Santos, F., Torn, M. S. & Bird, J. A. Biological degradation of pyrogenic organic matter in temperate forest soils. Soil Biol. Biochem. https://doi.org/10.1016/j.soilbio.2012.04.005 (2012).

  • Zimmermann, M. et al. Rapid degradation of pyrogenic carbon. Glob. Change Biol. 18, 3306–3316 (2012).

    Google Scholar 

  • Jones, M. W. et al. Fires prime terrestrial organic carbon for riverine export to the global oceans. Nat. Commun. 11, 2791 (2020).

    Google Scholar 

  • Qi, Y. et al. Dissolved black carbon is not likely a significant refractory organic carbon pool in rivers and oceans. Nat. Commun. 11, 5051 (2020).

    Google Scholar 

  • Pausas, J. G. & Paula, S. Fuel shapes the fire-climate relationship: evidence from Mediterranean ecosystems. Glob. Ecol. Biogeogr. 21, 1074–1082 (2012).

    Google Scholar 

  • Archibald, S., Lehmann, C. E. R., Gómez-Dans, J. L. & Bradstock, R. A. Defining pyromes and global syndromes of fire regimes. Proc. Natl Acad. Sci. USA 110, 6442–6447 (2013).

    Google Scholar 

  • Abatzoglou, J. T., Williams, A. P., Boschetti, L., Zubkova, M. & Kolden, C. A. Global patterns of interannual climate-fire relationships. Glob. Change Biol. 24, 5164–5175 (2018).

    Google Scholar 

  • Brando, P. M. et al. Prolonged tropical forest degradation due to compounding disturbances: implications for CO2 and H2O fluxes. Glob. Change Biol. 25, 2855–2868 (2019).

    Google Scholar 

  • Silva, C. V. J. et al. Drought-induced Amazonian wildfires instigate a decadal-scale disruption of forest carbon dynamics. Phil. Trans. R. Soc. B 373, 20180043 (2018).

    Google Scholar 

  • Withey, K. et al. Quantifying immediate carbon emissions from El Niño-mediated wildfires in humid tropical forests. Phil. Trans. R. Soc. B 373, 20170312 (2018).

    Google Scholar 

  • Pellegrini, A. F. A. et al. Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity. Nature 553, 194–198 (2018).

    Google Scholar 

  • Reisser, M., Purves, R. S., Schmidt, M. W. I. & Abiven, S. Pyrogenic carbon in soils: a literature-based inventory and a global estimation of its content in soil organic carbon and stocks.Front. Earth Sci. 4, 80 (2016).

    Google Scholar 

  • Wei, X., Hayes, D. J., Fraver, S. & Chen, G. Global pyrogenic carbon production during recent decades has created the potential for a large, long-term sink of atmospheric CO2. J. Geophys. Res. Biogeosci. 123, 3682–3696 (2018).

    Google Scholar 

  • Guimberteau, M. et al. ORCHIDEE-MICT (v8.4.1), a land surface model for the high latitudes: model description and validation. Geosci. Model Dev. 11, 121–163 (2018).

    Google Scholar 

  • Thonicke, K. et al. The influence of vegetation, fire spread and fire behaviour on biomass burning and trace gas emissions: results from a process-based model. Biogeosciences 7, 1991–2011 (2010).

    Google Scholar 

  • Yue, C. et al. Modelling the role of fires in the terrestrial carbon balance by incorporating SPITFIRE into the global vegetation model ORCHIDEE—Part 1: simulating historical global burned area and fire regimes. Geosci. Model Dev. 7, 2747–2767 (2014).

    Google Scholar 

  • Abiven, S. & Santín, C. Editorial: From fires to oceans: dynamics of fire-derived organic matter in terrestrial and aquatic ecosystems. Front. Earth Sci 7, 31 (2019).

    Google Scholar 

  • Santín, C., Doerr, S. H., Preston, C. M. & González-Rodríguez, G. Pyrogenic organic matter production from wildfires: a missing sink in the global carbon cycle. Glob. Change Biol. 21, 1621–1633 (2015).

    Google Scholar 

  • Santín, C. et al. Carbon sequestration potential and physicochemical properties differ between wildfire charcoals and slow-pyrolysis biochars. Sci. Rep. 7, 11233 (2017).

    Google Scholar 

  • Andela, N. et al. A human-driven decline in global burned area. Science 356, 1356–1362 (2017).

    Google Scholar 

  • Arora, V. K. & Melton, J. R. Reduction in global area burned and wildfire emissions since 1930s enhances carbon uptake by land. Nat. Commun. 9, 1326 (2018).

    Google Scholar 

  • Mouillot, F. & Field, C. B. Fire history and the global carbon budget: a 1° × 1° fire history reconstruction for the 20th century. Global Change Biol. 11, 398–420 (2005).

    Google Scholar 

  • Gibson, D. Grasses and Grassland Ecology. Annals of Botany (Oxford Univ. Press, 2009).

  • Dixon, A. P., Faber-Langendoen, D., Josse, C., Morrison, J. & Loucks, C. J. Distribution mapping of world grassland types. J. Biogeogr. 41, 2003–2019 (2014).

    Google Scholar 

  • Bond, W. J. Ancient grasslands at risk. Science 351, 120–122 (2016).

    Google Scholar 

  • Retallack, G. J. Global cooling by grassland soils of the geological past and near future. Annu. Rev. Earth Planet. Sci. 41, 69–86 (2013).

    Google Scholar 

  • Leys, B. A., Marlon, J. R., Umbanhowar, C. & Vannière, B. Global fire history of grassland biomes. Ecol. Evol. 8, 8831–8852 (2018).

    Google Scholar 

  • Alvarado, S. T., Andela, N., Silva, T. S. F. & Archibald, S. Thresholds of fire response to moisture and fuel load differ between tropical savannas and grasslands across continents. Glob. Ecol. Biogeogr. 29, 331–344 (2020).

    Google Scholar 

  • Buisson, E. et al. Resilience and restoration of tropical and subtropical grasslands, savannas and grassy woodlands. Biol. Rev. 94, 590–609 (2019).

    Google Scholar 

  • Rodionov, A. et al. Black carbon in grassland ecosystems of the world. Glob. Biogeochem. Cycles 24, GB3013 (2010).

    Google Scholar 

  • Haberl, H., Erb, K. H. & Krausmann, F. Human appropriation of net primary production: patterns, trends and planetary boundaries. Annu. Rev. Environ. Resources 39, 363–391 (2014).

    Google Scholar 

  • Medan, D., Torretta, J. P., Hodara, K., de la Fuente, E. B. & Montaldo, N. H. Effects of agriculture expansion and intensification on the vertebrate and invertebrate diversity in the Pampas of Argentina. Biodivers. Conserv. 20, 3077–3100 (2011).

    Google Scholar 

  • González-Roglich, M., Swenson, J. J., Villarreal, D., Jobbágy, E. G. & Jackson, R. B. Woody plant-cover dynamics in Argentine savannas from the 1880s to 2000s: the interplay of encroachment and agriculture conversion at varying scales. Ecosystems 18, 481–492 (2015).

    Google Scholar 

  • Satir, O. & Erdogan, M. A. Monitoring the land use/cover changes and habitat quality using Landsat dataset and landscape metrics under the immigration effect in subalpine eastern Turkey. Environ. Earth Sci. 75, 1118 (2016).

    Google Scholar 

  • Şekercioĝlu, Ç. H. et al. Turkey’s globally important biodiversity in crisis. Biol. Conserv. 144, 2752–2769 (2011).

    Google Scholar 

  • Schierhorn, F. et al. Post-Soviet cropland abandonment and carbon sequestration in European Russia, Ukraine and Belarus. Glob. Biogeochem. Cycles 27, 1175–1185 (2013).

    Google Scholar 

  • Jaglan, M. S. & Qureshi, M. H. Irrigation development and its environmental consequences in arid regions of India. Environ. Manage. 20, 323–336 (1996).

    Google Scholar 

  • Joshi, A. A., Sankaran, M. & Ratnam, J. ‘Foresting’ the grassland: historical management legacies in forest-grassland mosaics in southern India, and lessons for the conservation of tropical grassy biomes. Biol. Conserv. 224, 144–152 (2018).

    Google Scholar 

  • Huang, F., Wang, P. & Zhang, J. Grasslands changes in the Northern Songnen Plain, China during 1954–2000. Environ. Monit. Assess. 184, 2161–2175 (2012).

    Google Scholar 

  • Zhou, Y., Hartemink, A. E., Shi, Z., Liang, Z. & Lu, Y. Land use and climate change effects on soil organic carbon in north and northeast China. Sci. Total Environ. 647, 1230–1238 (2019).

    Google Scholar 

  • Williams, N. S. G. Environmental, landscape and social predictors of native grassland loss in western Victoria, Australia. Biol. Conserv. 137, 308–318 (2007).

    Google Scholar 

  • Dowling, P. M. et al. Effect of continuous and time-control grazing on grassland components in south-eastern Australia. Aust. J. Exp. Agric. 45, 369–382 (2005).

    Google Scholar 

  • DeLuca, T. H. & Zabinski, C. A. Prairie ecosystems and the carbon problem. Front. Ecol. Environ. 9, 407–413 (2011).

    Google Scholar 

  • Ceballos, G. et al. Rapid decline of a grassland system and its ecological and conservation implications. PLoS ONE 5, e8562 (2010).

    Google Scholar 

  • Haugo, R. et al. A new approach to evaluate forest structure restoration needs across Oregon and Washington, USA. For. Ecol. Manage. https://doi.org/10.1016/j.foreco.2014.09.014 (2015).

  • DeLuca, T. H. & Aplet, G. H. Charcoal and carbon storage in forest soils of the Rocky Mountain West. Front. Ecol. Environ. 6, 18–24 (2008).

    Google Scholar 

  • Walker, X. J. et al. Increasing wildfires threaten historic carbon sink of boreal forest soils. Nature 572, 520–523 (2019).

    Google Scholar 

  • Bellè, S. L. et al. Key drivers of pyrogenic carbon redistribution during a simulated rainfall event. Biogeosciences 18, 1105–1126 (2021).

    Google Scholar 

  • Abney, R. B., Jin, L. & Berhe, A. A. Soil properties and combustion temperature: controls on the decomposition rate of pyrogenic organic matter. Catena 182, 104127 (2019).

    Google Scholar 

  • Bradstock, R. A., Hammill, K. A., Collins, L. & Price, O. Effects of weather, fuel and terrain on fire severity in topographically diverse landscapes of south-eastern Australia. Landsc. Ecol. 25, 607–619 (2010).

    Google Scholar 

  • Rogers, B. M., Soja, A. J., Goulden, M. L. & Randerson, J. T. Influence of tree species on continental differences in boreal fires and climate feedbacks. Nat. Geosci. 8, 228–234 (2015).

    Google Scholar 

  • Coppola, A. I. & Druffel, E. R. M. Cycling of black carbon in the ocean. Geophys. Res. Lett. 43, 4477–4482 (2016).

    Google Scholar 

  • Stenzel, J. E. et al. Fixing a snag in carbon emissions estimates from wildfires. Glob. Change Biol. 25, 3985–3994 (2019).

    Google Scholar 

  • Murphy, B. P., Prior, L. D., Cochrane, M. A., Williamson, G. J. & Bowman, D. M. J. S. Biomass consumption by surface fires across Earth’s most fire prone continent. Glob. Change Biol. 25, 254–268 (2019).

    Google Scholar 

  • Brando, P. M. et al. Droughts, wildfires and forest carbon cycling: a pantropical synthesis. Annu. Rev. Earth Planet. Sci. 47, 555–581 (2019).

    Google Scholar 

  • Appezzato-da-Glória, B., Cury, G., Soares, M. K. M., Rocha, R. & Hayashi, A. H. Underground systems of Asteraceae species from the Brazilian Cerrado. J. Torrey Bot. Soc. 135, 103–113 (2008).

    Google Scholar 

  • Belcher, C. M. et al. The rise of angiosperms strengthened fire feedbacks and improved the regulation of atmospheric oxygen. Nat. Commun. 12, 503 (2021).

    Google Scholar 

  • Barbero, R., Abatzoglou, J. T., Larkin, N. K., Kolden, C. A. & Stocks, B. Climate change presents increased potential for very large fires in the contiguous United States. Int. J. Wildl. Fire 24, 892–899 (2015).

    Google Scholar 

  • Stephens, S. L. et al. Managing forests and fire in changing climates. Science 342, 41–42 (2013).

    Google Scholar 

  • Trenberth, K. E. Changes in precipitation with climate change. Clim. Res. 47, 123–138 (2011).

    Google Scholar 

  • Prein, A. F. et al. The future intensification of hourly precipitation extremes. Nat. Clim. Change 7, 48–52 (2017).

    Google Scholar 

  • Abatzoglou, J. T., Williams, A. P. & Barbero, R. Global emergence of anthropogenic climate change in fire weather indices. Geophys. Res. Lett. 46, 326–336 (2019).

    Google Scholar 

  • Silveira, F. A. O. et al. Myth-busting tropical grassy biome restoration. Restor. Ecol. 28, 1067–1073 (2020).

    Google Scholar 

  • Strassburg, B. B. N. et al. Global priority areas for ecosystem restoration. Nature 586, 724–729 (2020).

    Google Scholar 

  • Schmidt, H. P. et al. Pyrogenic carbon capture and storage. GCB Bioenergy 11, 573–591 (2019).

    Google Scholar 

  • Fu, Z. et al. Recovery time and state change of terrestrial carbon cycle after disturbance. Environ. Res. Lett. 12, 104004 (2017).

    Google Scholar 

  • Zhu, D. et al. Improving the dynamics of Northern Hemisphere high-latitude vegetation in the ORCHIDEE ecosystem model. Geosci. Model Dev. 8, 2263–2283 (2015).

    Google Scholar 

  • Zhu, D. et al. Simulating soil organic carbon in Yedoma deposits during the Last Glacial Maximum in a land surface model. Geophys. Res. Lett. 43, 5133–5142 (2016).

    Google Scholar 

  • Krinner, G. et al. A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Glob. Biogeochem. Cycles 19, GB1015 (2005).

    Google Scholar 

  • Yue, C., Ciais, P., Cadule, P., Thonicke, K. & Van Leeuwen, T. T. Modelling the role of fires in the terrestrial carbon balance by incorporating SPITFIRE into the global vegetation model ORCHIDEE—Part 2: carbon emissions and the role of fires in the global carbon balance. Geosci. Model Dev. 8, 1321–1338 (2015).

    Google Scholar 

  • Hantson, S. et al. The status and challenge of global fire modelling. Biogeosciences 13, 3359–3375 (2016).

    Google Scholar 

  • Hantson, S. et al. Quantitative assessment of fire and vegetation properties in simulations with fire-enabled vegetation models from the Fire Model Intercomparison Project. Geosci. Model Dev. 13, 3299–3318 (2020).

    Google Scholar 

  • Li, F. et al. Historical (1700–2012) global multi-model estimates of the fire emissions from the Fire Modeling Intercomparison Project (FireMIP). Atmos. Chem. Phys. 19, 12545–12567 (2019).

    Google Scholar 

  • Forkel, M. et al. Emergent relationships with respect to burned area in global satellite observations and fire-enabled vegetation models. Biogeosciences 16, 57–76 (2019).

    Google Scholar 

  • Parton, W. J., Stewart, J. W. B. & Cole, C. V. Dynamics of C, N, P and S in grassland soils: a model. Biogeochemistry 5, 109–131 (1988).

    Google Scholar 

  • Singh, N. et al. Transformation and stabilization of pyrogenic organic matter in a temperate forest field experiment. Glob. Change Biol. 20, 1629–1642 (2014).

    Google Scholar 

  • Viovy, N. CRUNCEP Version 7—Atmospheric Forcing Data for the Community Land Model (Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, 2018); https://doi.org/10.5065/PZ8F-F017

  • Mckee, T. B. T. et al. The relationship of drought frequency and duration to time scales. In Proc. Eighth Conference on Applied Climatology 179–184 (American Meteorological Society, 1993).

  • The NCAR Command Language, Version 6.6.2 (UCAR/NCAR/CISL/TDD, 2019).

  • Freeborn, P. H., Wooster, M. J., Roy, D. P. & Cochrane, M. A. Quantification of MODIS fire radiative power (FRP) measurement uncertainty for use in satellite-based active fire characterization and biomass burning estimation. Geophys. Res. Lett. 41, 1988–1994 (2014).

    Google Scholar 

  • Giglio, L. MODIS Collection 5 Active Fire Product User’s Guide Version 2.5 (Science Systems and Applications, 2013).

  • Huang, N. et al. Spatial and temporal variations in global soil respiration and their relationships with climate and land cover. Sci. Adv. 6, eabb8508 (2020).

    Google Scholar 

  • Warner, D. L., Bond-Lamberty, B., Jian, J., Stell, E. & Vargas, R. Spatial predictions and associated uncertainty of annual soil respiration at the global scale. Glob. Biogeochem. Cycles 33, 1733–1745 (2019).

    Google Scholar 


  • Source: Ecology - nature.com

    RNA test detects deadly pregnancy disorder early

    Modelling the emergence dynamics of the western corn rootworm beetle (Diabrotica virgifera virgifera)