in

Quantifying fish otolith mineralogy for trace-element chemistry studies

  • Morrongiello, J. R., Thresher, R. E. & Smith, D. C. Aquatic biochronologies and climate change. Nat. Clim. Change 2, 849 (2012).

    ADS 
    Article 

    Google Scholar 

  • Pracheil, B. M., Hogan, J. D., Lyons, J. & McIntyre, P. B. Using hard-part microchemistry to advance conservation and management of North American freshwater fishes. Fisheries 39, 451–465 (2014).

    Article 

    Google Scholar 

  • Starrs, D., Ebner, B. C. & Fulton, C. J. All in the ears: Unlocking the early life history biology and spatial ecology of fishes. Biol. Rev. 91, 86–105 (2016).

    Article 

    Google Scholar 

  • Limburg, K. E. Otolith strontium traces environmental history of subyearling American shad Alosa sapidissima. Mar. Ecol. Progr. Ser. 119, 25–35 (1995).

    ADS 
    Article 

    Google Scholar 

  • Kennedy, B. P., Klaue, A., Blum, J. D., Folt, C. L. & Nislow, K. H. Reconstructing the lives of fish using Sr isotopes in otoliths. Can. J. Fish. Aquat. Sci. 59, 925–929 (2002).

    Article 

    Google Scholar 

  • Hogan, J. D., Blum, M. J., Gilliam, J. F., Bickford, N. & McIntyre, P. B. Consequences of alternative dispersal strategies in a putatively amphidromous fish. Ecology 95, 2397–2408 (2014).

    Article 

    Google Scholar 

  • Carlson, A. K., Phelps, Q. E. & Graeb, B. D. S. Chemistry to conservation: using otoliths to advance recreational and commercial fisheries management. J. Fish Biol. 90, 505–527 (2017).

    CAS 
    Article 

    Google Scholar 

  • Campana, S. E. Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Mar. Ecol. Prog. Ser. 188, 263–297 (1999).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Pracheil, B. M. et al. Sturgeon and paddlefish (Acipenseridae) sagittal otoliths are composed of the calcium carbonate polymorphs vaterite and calcite. J. Fish Biol. 90, 549–558 (2017).

    CAS 
    Article 

    Google Scholar 

  • Pracheil, B. M., George, R. & Chakoumakos, B. C. Significance of otolith calcium carbonate crystal structure diversity to microchemistry studies. Rev. Fish Biol. Fish. 29, 569–588 (2019).

    Article 

    Google Scholar 

  • Nehrke, G., Poigner, H., Wilhelms-Dick, D., Brey, T. & Abele, D. Coexistence of three calcium carbonate polymorphs in the shell of the Antarctic clam Laternula elliptica. Geochem. Geophys. Geosyst. 13(5), 15. https://doi.org/10.1029/2011GC003996 (2012).

    CAS 
    Article 

    Google Scholar 

  • Wassenburg, J. A. et al. Determination of aragonite trace element distribution coefficients from speleothem calcite–aragonite transitions. Geochim. Cosmochim. Acta 190, 347–367 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Tzeng, W. N. et al. Misidentification of the migratory history of anguillid eels by Sr/Ca ratios of vaterite otoliths. Mar. Ecol. Prog. Ser. 348, 285–295 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Gauldie, R. W. Effects of temperature and vaterite replacement on the chemistry of metal ions in the otoliths of Oncorhynchus tshawytscha. Can. J. Fish. Aquat. Sci. 53, 2015–2026 (1996).

    CAS 
    Article 

    Google Scholar 

  • Reimer, T. et al. Rapid growth causes abnormal vaterite formation in farmed fish otoliths. J. Exp. Biol. 220, 2965–2969 (2017).

    PubMed 

    Google Scholar 

  • Coll-Lladó, C., Giebichenstein, J., Webb, P. B. & Bridges, C. R. Ocean acidification promotes otolith growth and calcite deposition in gilthead sea bream (Sparus aurata) larvae. Sci. Rep. 8, 8384 (2018).

    ADS 
    Article 

    Google Scholar 

  • Loeppky, A. R. et al. Influence of ontogenetic development, temperature, and pCO2 on otolith calcium carbonate polymorph composition in sturgeons. Sci. Rep. 11(1), 1–10 (2021).

    Article 

    Google Scholar 

  • Melancon, S., Fryer, B. J., Ludsin, S. A., Gagnon, J. E. & Yang, Z. Effects of crystal structure on the uptake of metals by lake trout (Salvelinus namaycush) otoliths. Can. J. Fish. Aquat. Sci. 62, 2609–2619 (2005).

    CAS 
    Article 

    Google Scholar 

  • Veinott, G. I., Porter, T. R. & Nasdala, L. Using Mg as a proxy for crystal structure and Sr as an indicator of marine growth in vaterite and aragonite otoliths of aquaculture rainbow trout. Trans. Am. Fish. Soc. 138, 1157–1165 (2009).

    CAS 
    Article 

    Google Scholar 

  • Loeppky, A. R., Chakoumakos, B. C., Pracheil, B. M. & Anderson, W. G. Otoliths of sub-adult Lake Sturgeon Acipenser fulvescens contain aragonite and vaterite calcium carbonate polymorphs. J. Fish Biol. 94, 810–814 (2019).

    CAS 
    Article 

    Google Scholar 

  • Vignon, M. When the presence of a vateritic otolith has morphological effect on its aragonitic partner: Trans-lateral compensation induces bias in microecological patterns in one-side-only vateritic otolith. Can. J. Fish. Aquat. Sci. 77, 285–294 (2020).

    Article 

    Google Scholar 

  • Clarke, A. D., Telmer, K. H. & Mark Shrimpton, J. Elemental analysis of otoliths, fin rays and scales: A comparison of bony structures to provide population and life-history information for the Arctic grayling (Thymallus arcticus). Ecol. Freshw. Fish 16, 354–361 (2007).

    Article 

    Google Scholar 

  • Campana, S. E., Chouinard, G. A., Hanson, J. M., Frechet, A. & Brattey, J. Otolith elemental fingerprints as biological tracers of fish stocks. Fish. Res. 46, 343–357 (2000).

    Article 

    Google Scholar 

  • Gauldie, R. W. Continuous and discontinuous growth in the otolith of Macruronus novaezelandiae (Merlucciidae: Teleostei). J. Morphol. 216(3), 271–294 (1993).

    CAS 
    Article 

    Google Scholar 

  • Long, J. M., Snow, R. A., Pracheil, B. M. & Chakoumakos, B. C. Morphology and composition of Goldeye (Hiodontidae; Hiodon alosoides) otoliths. J. Morphol. 282(4), 511–519 (2021).

    CAS 
    Article 

    Google Scholar 

  • Chakoumakos, B. C., Pracheil, B. M., Koenigs, R. P., Bruch, R. M. & Feygenson, M. Empirically testing vaterite structural models using neutron diffraction and thermal analysis. Sci. Rep. 6, 36799 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • David, A. W., Grimes, C. B. & Isely, J. J. Vaterite sagittal otoliths in hatchery-reared juvenile red drums. Progres. Fish-Cult. 56(4), 301–303 (1994).

    Article 

    Google Scholar 

  • Tomás, J. & Geffen, A. J. Morphometry and composition of aragonite and vaterite otoliths of deformed laboratory reared juvenile herring from two populations. J. Fish Biol. 63(6), 1383–1401 (2003).

    Article 

    Google Scholar 

  • Kamhi, S. R. On the structure of vaterite CaCO3. Acta Crystallogr. A 16(8), 770–772 (1963).

    CAS 
    Article 

    Google Scholar 

  • Kartnaller, V., Ribeiro, E. M., Venancio, F., Rosariob, F. & Cajaiba, J. Preferential incorporation of sulfate into calcite polymorphs during calcium carbonate precipitation: an experimental approach. CrystEngComm 20, 2241–2244 (2018).

    CAS 
    Article 

    Google Scholar 

  • Paquette, J. & Reeder, R. J. Relationship between surface structure, growth mechanism, and trace element incorporation in calcite. Geochim. Cosmochim. Acta 59(4), 735–749 (1995).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Hüssy, K. & Mosegaard, H. Atlantic cod (Gadus morhua) growth and otolith accretion characteristics modelled in a bioenergetics context. Can. J. Fish. Aquat. Sci. 61(6), 1021–1031 (2004).

    Article 

    Google Scholar 

  • Fablet, R. et al. Shedding light on fish otolith biomineralization using a bioenergetic approach. PLoS ONE 6(11), e27055 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Naslund, A. W., Davis, B. E., Hobbs, J. A., Fangue, N. A. & Todgham, A. E. Warming, not CO2-acidified seawater, alters otolith development of juvenile Antarctic emerald rockcod (Trematomus bernacchii). Polar Biol. 44(9), 1917–1923 (2021).

    Article 

    Google Scholar 

  • Coll-Lladó, C. et al. Pilot study to investigate the effect of long-term exposure to high pCO2 on adult cod (Gadus morhua) otolith morphology and calcium carbonate deposition. Fish Physiol. Biochem. 48, 1879–1891 (2021).

    Article 

    Google Scholar 

  • Söllner, C. et al. Control of crystal size and lattice formation by starmaker in otolith biomineralization. Science 302(5643), 282–286 (2003).

    ADS 
    Article 

    Google Scholar 

  • Rodriguez-Carvajal, J. FULLPROF: A program for Rietveld refinement and pattern matching analysis. In Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr (Vol. 127) (1990).

  • Roisnel, T. & Rodríquez-Carvajal, J. WinPLOTR: A windows tool for powder diffraction pattern analysis. Mater. Sci. 378(1), 118–123 (2001).

    Google Scholar 

  • Momma, K. & Izumi, F. VESTA: A three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 41(3), 653–658 (2008).

    CAS 
    Article 

    Google Scholar 

  • Slater, J. C. Atomic radii in crystals. J. Chem. Phys. 41(10), 3199–3205 (1964).

    ADS 
    CAS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    3 Questions: The future of international education

    Advancing public understanding of sea-level rise