in

Ranking threats to biodiversity and why it doesn’t matter

The difficulties inherent in ranking global threats are due to them being context-dependent, which result from conditions and the nature of the threats themselves differing among locations, habitats, and taxa (Fig. 1). Current high-risk hotspots from habitat loss and overexploitation are primarily located in the tropics, whereas Europe is documented as a threat hotspot for pollution6. On islands, biological invasions mainly threaten biodiversity in the Pacific and Atlantic Oceans, while islands in the Indian Ocean and near the coasts of Asia are mostly threatened by overexploitation and agriculture3. Climate change affects species more at higher latitudes and altitudes because species are constrained by the physical environment (geographic barriers and mountain tops) to follow their optimal isotherms.

Fig. 1: Divergence of global threat rankings across different references and international agencies.

IPBES, WWF, and IUCN established global rankings of the five threats responsible for the current biodiversity crisis (B: central, yellow panel). However, the relative importance of each threat depends on the taxon, system, species’ characteristics, time, and/or the metric considered, resulting in divergences. Global biodiversity threats are represented by colors and symbols, given in the top panel. This figure encapsulates results combined from different studies detailed in Supplementary Table 1 with their associated references.

Full size image

The relative importance of threats also depends on the taxon considered. At the global scale, vertebrates are primarily threatened by habitat loss, overexploitation, and then biological invasions. But even within the vertebrates rankings differ — birds and mammals are mainly affected by overexploitation, while amphibians have a higher probability of succumbing to habitat loss6. Because of species-specific traits and adaptations, some species are likely to respond differently to global threats even within a clade. Large-bodied vertebrates are more likely to be threatened by overexploitation, whereas small-bodied vertebrates are more prone to habitat loss or pollution (Fig. 1). Threat ranking also depends on the habitat under consideration. Marine mammals are more threatened by overexploitation and pollution than terrestrial mammals for which habitat loss is the primary threat (Fig. 1). On islands, habitat loss is secondary to the pressures of biological invasions in freshwater systems, but the former is more important for terrestrial vertebrates and plants3. Another source of uncertainty is that most studies examining threats are based on well-studied taxa such as terrestrial vertebrates, which only represent a small subset of the tree of life. For instance, only 0.2% of fungi, 1.7% of invertebrates, and 10% of described plants are assessed in the IUCN update of 20197, potentially underestimating the intensity of some threats and biasing conservation priorities for these groups. Similarly, there is a bias of research effort towards regions with high-income countries, while research from low or middle-income countries is generally underrepresented8. This may give the false impression of absence of threats in some regions of the world.

Likewise, period-specific global threat ranks are subject to the vagaries of temporal dynamics (Fig. 1). However, distinguishing past, current, and future threats is essential for current or future conservation interventions. Historically, overexploitation caused most of the Pleistocene megafauna extinctions, likely exacerbated by climate change. As agricultural practices intensified, habitat loss played a major role in extinctions. As humans later colonized islands, biological invasions caused the extinction of hundreds of species worldwide3. In contrast, climate change is only predicted to become major in the near future9. In fact, the effects of recent threats might be masked by delayed species’ responses, especially in under-studied regions, resulting in a large extinction debt. For instance, the severity of biological invasions often causes native species to decline rapidly to local extinction, while other threats such as habitat loss might affect species more slowly. In both cases, the eventual extinctions are ultimately if similar magnitude.


Source: Ecology - nature.com

Cohort dominance rank and “robbing and bartering” among subadult male long-tailed macaques at Uluwatu, Bali

Solar-powered desalination device wins MIT $100K competition