in

Rapid Eocene diversification of spiny plants in subtropical woodlands of central Tibet

  • Reich, P. B. et al. The evolution of plant functional variation: traits, spectra, and strategies. Int. J. Plant Sci. 164, S143–S164 (2003).

    Google Scholar 

  • Cornelissen, J. H. C. et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J. Bot. 51, 335–380 (2003).

    Google Scholar 

  • Liu, X. J. & Ma, K. P. Plant functional traits concepts, applications and future directions. Sci. Sin. Vitae 45, 325–339 (2015).

    Google Scholar 

  • Diaz, S., Cabido, M. & Casanoves, F. Plant functional traits and environmental filters at a regional scale. J. Veg. Sci. 9, 113–122 (1998).

    Google Scholar 

  • Kraft, N. J. B., Godoy, O. & Levine, J. M. Plant functional traits and the multidimensional nature of species coexistence. Proc. Natl Acad. Sci. USA 112, 797–802 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Barton, K. E. Tougher and thornier: general patterns in the induction of physical defence traits. Func. Ecol. 30, 181–187 (2016).

    Google Scholar 

  • Adler, P. B., Fajardo, A., Kleinhesselink, A. R. & Kraft, N. J. B. Trait-based tests of coexistence mechanisms. Ecol. Lett. 16, 1294–1306 (2013).

    PubMed 

    Google Scholar 

  • Wright, S. J. et al. Functional traits and the growth–mortality trade-off in tropical trees. Ecology 91, 3664–3674 (2010).

    PubMed 

    Google Scholar 

  • Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Ruiz-Jaen, M. C. & Potvin, C. Can we predict carbon stocks in tropical ecosystems from tree diversity? Comparing species and functional diversity in a plantation and a natural forest. New Phytol. 189, 978–987 (2011).

    PubMed 

    Google Scholar 

  • Grubb, P. J. A positive distrust in simplicity-lessons from plant defences and from competition among plants and among animals. J. Ecol. 80, 585–610 (1992).

    Google Scholar 

  • Hanley, M. E., Lamont, B. B., Fairbanks, M. M. & Rafferty, C. M. Plant structural traits and their role in anti-herbivore defence. Perspect. Plant Ecol. 8, 157–178 (2007).

    Google Scholar 

  • Burns, K. C. Spinescence in the New Zealand flora: parallels with Australia. N. Z. J. Bot. 54, 273–289 (2016).

    Google Scholar 

  • Goheen, J. R., Young, T. P., Keesing, F. & Palmer, T. M. Consequences of herbivory by native ungulates for the reproduction of a savanna tree. J. Ecol. 95, 129–138 (2007).

    Google Scholar 

  • Goldel, B., Kissling, W. D. & Svenning, J.-C. Geographical variation and environmental correlates of functional trait distributions in palms (Arecaceae) across the New World. Bot. J. Linn. Soc. 179, 602–617 (2015).

    Google Scholar 

  • Alves-Silva, E. & Del-Claro, K. Herbivory causes increases in leaf spinescence and fluctuating asymmetry as a mechanism of delayed induced resistance in a tropical savanna tree. Plant Ecol. Evol. 149, 73–80 (2016).

    Google Scholar 

  • Cooper, S. M. & Ginnett, T. F. Spines protect plants against browsing by small climbing mammals. Oecologia 113, 219–221 (1998).

    ADS 
    PubMed 

    Google Scholar 

  • Charles-Dominique, T. et al. Spiny plants, mammal browsers, and the origin of African savannas. Proc. Natl Acad. Sci. USA 113, E5572–E5579 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ratnam, J., Tomlinson, K. W., Rasquinha, D. N. & Sankaran, M. Savannahs of Asia: antiquity, biogeography, and an uncertain future. Philos. Trans. R. Soc. B. 371, 20150305 (2016).

    Google Scholar 

  • Scholes, R. & Archer, S. Tree-grass interactions in savannas. Annu. Rev. Ecol. Syst. 28, 517–544 (1997).

    Google Scholar 

  • Cerling, T. E. Development of grasslands and savannas in East Africa during the Neogene. Palaeogeogr. Palaeoclimatol. Palaeoecol. 97, 241–247 (1992).

    Google Scholar 

  • Brown, R. W. Additions to the flora of the Green River formation. U. S. Geol. Surv. Prof. Paper, U. S. Gov. Print. Off. 154-J, 279–292 (1929).

  • Manchester, S. Oligocene fossil plants of the John Day Formation, Oregon. Or. Geol. 49, 115d–127d (1987).

    Google Scholar 

  • Meyer, H. W. & Manchester, S. R. Oligocene Bridge Creek flora of the John Day Formation, Oregon (Univ. California Press, 1997).

  • Lancucka-Srodoniowa, M. Tortonian flora from the “Gdow Bay” in the south of Poland. Acta Palaeobot. 7, 1–134 (1966).

    Google Scholar 

  • Yuan, J. et al. Rapid drift of the Tethyan Himalaya terrane before two-stage India-Asia collision. Natl Sci. Rev. 8, nwaa173 (2021).

    PubMed 

    Google Scholar 

  • Spicer, R. A. et al. Why the ‘Uplift of the Tibetan Plateau’is a myth. Natl Sci. Rev. 8, nwaa091 (2021).

    PubMed 

    Google Scholar 

  • Spicer, R. A. Tibet, the Himalaya, Asian monsoons and biodiversity–In what ways are they related? Plant Divers. 39, 233–244 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • DeCelles, P. G., Kapp, P., Gehrels, G. E. & Ding, L. Paleocene-Eocene foreland basin evolution in the Himalaya of southern Tibet and Nepal: implications for the age of initial India-Asia collision. Tectonics 33, 824–849 (2014).

    ADS 

    Google Scholar 

  • Royden, L. H., Burchfiel, B. C. & van der Hilst, R. D. The geological evolution of the Tibetan Plateau. Science 321, 1054–1058 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Deng, T., Wu, F. X., Zhou, Z. K. & Su, T. Tibetan Plateau: an evolutionary junction for the history of modern biodiversity. Sci. China Earth Sci. 63, 172–187 (2020).

    ADS 

    Google Scholar 

  • Favre, A. et al. The role of the uplift of the Qinghai‐Tibetan Plateau for the evolution of Tibetan biotas. Biol. Rev. 90, 236–253 (2015).

    PubMed 

    Google Scholar 

  • Su, T. et al. A Middle Eocene lowland humid subtropical “Shangri-La” ecosystem in central Tibet. Proc. Natl Acad. Sci. USA 117, 32989–32995 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Scientific Expedition Team to the Qinghai-Xizang Plateau. Vegetation of Xizang (Tibet) (Sci. Press, 1988).

  • Liu. X. H. Paleoelevation History and Evolution of the Cenozoic Lunpola basin, Central Tibet. Doctoral thesis (Institute of Tibetan Plateau Research, Chinese Academy of Sciences, 2018).

  • Xiong, Z. Y. et al. The rise and demise of the Paleogene Central Tibetan Valley. Sci. Adv. 8, eabj0944 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Reichgelt, T., West, C. K. & Greenwood, D. R. The relation between global palm distribution and climate. Sci. Rep. 8, 4721 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Farnsworth, A. et al. Paleoclimate model-derived thermal lapse rates: towards increasing precision in paleoaltimetry studies. Earth Planet. Sci. Lett. 564, 116903 (2021).

    CAS 

    Google Scholar 

  • Spicer, R. A. et al. Why do foliar physiognomic climate estimates sometimes differ from those observed? Insights from taphonomic information loss and a CLAMP case study from the Ganges Delta. Palaeogeogr. Palaeoclimatol. Palaeoecol. 302, 381–395 (2011).

    Google Scholar 

  • Walter, H. Vegetation of the Earth and Ecological Systems of the Geo-biosphere (Springer Berlin Heidelb., 1973).

  • Burley, J. Encyclopedia of Forest Sciences (Acad. Press, 2004).

  • Deng, T. et al. A mammalian fossil from the Dingqing Formation in the Lunpola Basin, northern Tibet, and its relevance to age and paleo-altimetry. Sci. Bull. 57, 261–269 (2012).

    CAS 

    Google Scholar 

  • Ma, P. F. et al. Late Oligocene-early Miocene evolution of the Lunpola Basin, central Tibetan Plateau, evidences from successive lacustrine records. Gondwana Res. 48, 224–236 (2017).

    ADS 

    Google Scholar 

  • Hempson, G. P., Archibald, S. & Bond, W. J. A continent-wide assessment of the form and intensity of large mammal herbivory in Africa. Science 350, 1056–1061 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Spicer, R. A. The formation and interpretation of plant fossil assemblages. Adv. Bot. Res. 16, 95–191 (1989).

    Google Scholar 

  • Gibson, D. J. Grasses and Grassland Ecology (Oxford Univ. Press, 2009).

  • Eltringham, S. K. The Hippos: Natural History and Conservation (Princeton Univ. Press, 1999).

  • Jiang, H. et al. Oligocene Koelreuteria (Sapindaceae) from the Lunpola Basin in central Tibet and its implication for early diversification of the genus. J. Asian Earth Sci. 175, 99–108 (2019).

    ADS 

    Google Scholar 

  • Liu, J. et al. Biotic interchange through lowlands of Tibetan Plateau suture zones during Paleogene. Palaeogeogr. Palaeoclimatol. Palaeoecol. 524, 33–40 (2019).

    Google Scholar 

  • Jia, L. B. et al. First fossil record of Cedrelospermum (Ulmaceae) from the Qinghai-Tibetan Plateau: implications for morphological evolution and biogeography. J. Syst. Evol. 57, 94–104 (2019).

    Google Scholar 

  • Su, T. et al. No high Tibetan Plateau until the Neogene. Sci. Adv. 5, eaav2189 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, Y. L., Li, B. Y. & Zheng, D. A discussion on the boundary and area of the Tibetan Plateau in China. Geol. Res. 21, 1–8 (2002).

    Google Scholar 

  • Yao, T. D. et al. From Tibetan Plateau to Third Pole and Pan-Third Pole. Bull. Chin. Acad. Sci. 32, 924–931 (2017).

    Google Scholar 

  • Spicer, R. A., Farnsworth, A. & Su, T. Cenozoic topography, monsoons and biodiversity conservation within the Tibetan Region: an evolving story. Plant Divers. 42, 229–254 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, X. H., Xu, Q. & Ding, L. Differential surface uplift: Cenozoic paleoelevation history of the Tibetan Plateau. Sci. China Earth Sci. 59, 2105–2120 (2016).

    ADS 
    CAS 

    Google Scholar 

  • Ding, L., Li, Z. Y. & Song, P. P. Core fragments of Tibetan Plateau from Gondwanaland united in Northern Hemisphere. Bull. Chin. Acad. Sci. 32, 945–950 (2017).

    Google Scholar 

  • Deng, T. & Ding, L. Paleoaltimetry reconstructions of the Tibetan Plateau: progress and contradictions. Natl Sci. Rev. 2, 417–437 (2015).

    CAS 

    Google Scholar 

  • Li, S. F. et al. Orographic evolution of northern Tibet shaped vegetation and plant diversity in eastern Asia. Sci. Adv. 7, eabc7741 (2021).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ding, L. et al. The Andean-type Gangdese Mountains: Paleoelevation record from the Paleocene–Eocene Linzhou Basin. Earth Planet. Sci. Lett. 392, 250–264 (2014).

    ADS 
    CAS 

    Google Scholar 

  • Deng, T. et al. Review: implications of vertebrate fossils for paleo-elevations of the Tibetan Plateau. Glob. Planet. Change 174, 58–69 (2019).

    ADS 

    Google Scholar 

  • Westerhold, T. et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science 369, 1383–1387 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Nemani, R. R. et al. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300, 1560–1563 (2003).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Hopkins, W. G. Introduction to Plant Physiology (John Wiley & Sons, 1999).

  • Sun, J. M., Liu, W. G., Liu, Z. H. & Fu, B. H. Effects of the uplift of the Tibetan Plateau and retreat of Neotethys ocean on the stepwise aridification of mid-latitude Asian interior. Bull. Chin. Acad. Sci. 32, 951–958 (2017).

    Google Scholar 

  • Zong, G. F. Cenezoic Mammals and Environment of Hengduan Mountains Region (China Ocean Press, 1996).

  • Deng, T. et al. An Oligocene giant rhino provides insights into Paraceratherium evolution. Commun. Biol. 4, 639 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Young, T. P., Stanton, M. L. & Christian, C. E. Effects of natural and simulated herbivory on spine lengths of Acacia drepanolobium in Kenya. Oikos 101, 171–179 (2003).

    Google Scholar 

  • Karban, R. & Myers, J. H. Induced plant responses to herbivory. Annu. Rev. Ecol. Syst. 20, 331–348 (1989).

    Google Scholar 

  • Huntly, N. Herbivores and the dynamics of communities and ecosystems. Annu. Rev. Ecol. Syst. 22, 477–503 (1991).

    Google Scholar 

  • Asner, G. P. et al. Large-scale impacts of herbivores on the structural diversity of African savannas. Proc. Natl Acad. Sci. USA 106, 4947–4952 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sankaran, M., Augustine, D. J. & Ratnam, J. Native ungulates of diverse body sizes collectively regulate long‐term woody plant demography and structure of a semi‐arid savanna. J. Ecol. 101, 1389–1399 (2013).

    Google Scholar 

  • Staver, A. C. & Bond, W. J. Is there a ‘browse trap’? Dynamics of herbivore impacts on trees and grasses in an African savanna. J. Ecol. 102, 595–602 (2014).

    Google Scholar 

  • Bakker, E. S. et al. Combining paleo-data and modern exclosure experiments to assess the impact of megafauna extinctions on woody vegetation. Proc. Natl Acad. Sci. USA 113, 847–855 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Spicer, R. A. et al. The topographic evolution of the Tibetan Region as revealed by palaeontology. Palaeobio. Palaeoenv. 101, 213–243 (2021).

    Google Scholar 

  • Rowley, D. B. & Currie, B. S. Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet. Nature 439, 677–681 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Sun, J. M. et al. Palynological evidence for the latest Oligocene-early Miocene paleoelevation estimate in the Lunpola Basin, central Tibet. Palaeogeogr. Palaeoclimatol. Palaeoecol. 399, 21–30 (2014).

    Google Scholar 

  • DeCelles, P. G., Kapp, P., Ding, L. & Gehrels, G. E. Late Cretaceous to middle Tertiary basin evolution in the central Tibetan Plateau: Changing environments in response to tectonic partitioning, aridification, and regional elevation gain. Geol. Soc. Am. Bull. 119, 654–680 (2007).

    ADS 

    Google Scholar 

  • Tang, H. et al. Extinct genus Lagokarpos reveals a biogeographic connection between Tibet and other regions in the Northern Hemisphere during the Paleogene. J. Syst. Evol. 57, 670–677 (2019).

    Google Scholar 

  • Wang, T. X. et al. Fossil fruits of Illigera (Hernandiaceae) from the Eocene of central Tibetan Plateau. J. Syst. Evol. 59, 1276–1286 (2021).

    Google Scholar 

  • Del Rio, C. et al. Asclepiadospermum gen. nov., the earliest fossil record of Asclepiadoideae (Apocynaceae) from the early Eocene of central Qinghai-Tibetan Plateau, and its biogeographic implications. Am. J. Bot. 107, 126–138 (2020).

    PubMed 

    Google Scholar 

  • Xu, Z. Y. The Tertiary and its petroleum potential in the Lunpola Basin, Tibet. Oil Gas. Geol. 1, 153–158 (1980).

    Google Scholar 

  • Zhang, K. X. et al. Paleogene-Neogene stratigraphic realm and sedimentary sequence of the Qinghai-Tibet Plateau and their response to uplift of the plateau. Sci. China Earth Sci. 53, 1271–1294 (2010).

    ADS 

    Google Scholar 

  • Wu, Y. F. & Chen, Y. Y. Fossil cyprinid fishes from the late Tertiary of north Xizang, China. Vertebrata Palasiat. 18, 15–20 (1980).

    Google Scholar 

  • Wu, F. X., Miao, D. S., Chang, M. M., Shi, G. L. & Wang, N. Fossil climbing perch and associated plant megafossils indicate a warm and wet central Tibet during the late Oligocene. Sci. Rep. 7, 878 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cai, C. Y., Huang, D. Y., Wu, F. X., Zhao, M. & Wang, N. Tertiary water striders (Hemiptera, Gerromorpha, Gerridae) from the central Tibetan Plateau and their palaeobiogeographic implications. J. Asian Earth Sci. 175, 121–127 (2017).

    ADS 

    Google Scholar 

  • Low, S. L. et al. Oligocene Limnobiophyllum (Araceae) from the central Tibetan Plateau and its evolutionary and palaeoenvironmental implications. J. Syst. Palaeontol. 18, 415–431 (2020).

    Google Scholar 

  • Bell, A. D. & Bryan, A. Plant Form: An Illustrated Guide to Flowering Plant Morphology (Timber Press, 2008).

  • Zanne, A. E. et al. Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89–92 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).

    Google Scholar 

  • Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 35, 526–528 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Harmon, L. J., Weir, J. T., Brock, C. D., Glor, R. E. & Challenger, W. GEIGER: investigating evolutionary radiations. Bioinformatics. 24, 129–131 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Maddison, W. P. Confounding asymmetries in evolutionary diversification and character change. Evolution 60, 1743–1746 (2006).

    PubMed 

    Google Scholar 

  • Forest, C. E., Molnar, P. & Emanuel, K. A. Palaeoaltimetry from energy conservation principles. Nature 374, 347–350 (1995).

    ADS 
    CAS 

    Google Scholar 

  • Valdes, P. J. et al. The BRIDGE HadCM3 family of climate models: HadCM3@ Bristol v1.0. Geosci. Model Dev. 10, 3715–3743 (2017).

    ADS 
    CAS 

    Google Scholar 

  • Gough, D. O. Solar interior structure and luminosity variations. Sol. Phys. 74, 21–34 (1981).

    ADS 
    CAS 

    Google Scholar 

  • Foster, G. L., Royer, D. L. & Lunt, D. J. Future climate forcing potentially without precedent in the last 420 million years. Nat. Commun. 8, 14845 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cox, P. M. Description of the “TRIFFID” Dynamic Global Vegetation Model. 1–16 (Met Office Hadley Centre, 2001).

  • Cox, P., Huntingford, C. & Harding, R. A canopy conductance and photosynthesis model for use in a GCM land surface scheme. J. Hydrol. 212, 79–94 (1998).

    ADS 

    Google Scholar 

  • McInerney, F. A., Strömberg, C. A. E. & White, J. W. C. The Neogene transition from C3 to C4 grasslands in North America stable carbon isotope ratios of fossil phytoliths. Paleobiology 37, 23–49 (2011).

    Google Scholar 

  • Lu, H. Y. et al. Phytoliths as quantitative indicators for the reconstruction of past environmental conditions in China II: palaeoenvironmental reconstruction in the Loess Plateau. Quat. Sci. Rev. 25, 945–959 (2006).

    ADS 

    Google Scholar 


  • Source: Ecology - nature.com

    Better living through multicellular life cycles

    Paninvasion severity assessment of a U.S. grape pest to disrupt the global wine market