in

Rare and declining bird species benefit most from designating protected areas for conservation in the UK

  • Johnson, C. N. et al. Biodiversity losses and conservation responses in the Anthropocene. Science 356, 270–275 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Maxwell, S. L. et al. Area-based conservation in the twenty-first century. Nature 586, 217–227 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schulze, K. et al. An assessment of threats to terrestrial protected areas. Conserv. Lett. 11, e12435 (2018).

    Article 

    Google Scholar 

  • Bingham, H. C. et al. (eds). Protected Planet Report 2020 (UNEP-WCMC & IUCN, 2021); https://livereport.protectedplanet.net/

  • Buchanan, G. M., Butchart, S. H., Chandler, G. & Gregory, R. D. Assessment of national-level progress towards elements of the Aichi Biodiversity Targets. Ecol. Indic. 116, 106497 (2020).

    Article 

    Google Scholar 

  • Xu, H. et al. Ensuring effective implementation of the post-2020 global biodiversity targets. Nat. Ecol. Evol. 5, 411–418 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Report of the Open-ended Working Group on the Post-2020 Global Biodiversity Framework on Its Third Meeting (CBD Secretariat, 2022); https://www.cbd.int/conferences/post2020/wg2020-03/documents

  • Rodrigues, A. S. & Cazalis, V. The multifaceted challenge of evaluating protected area effectiveness. Nat. Commun. 11, 5147 (2020).

    Article 
    PubMed Central 
    CAS 
    PubMed 

    Google Scholar 

  • Geldmann, J., Manica, A., Burgess, N. D., Coad, L. & Balmford, A. A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. Proc. Natl Acad. Sci. USA 116, 23209–23215 (2019).

    Article 
    PubMed Central 
    CAS 
    PubMed 

    Google Scholar 

  • Starnes, T. et al. The extent and effectiveness of protected areas in the UK. Glob. Ecol. Conserv. 30, e01745 (2021).

    Article 

    Google Scholar 

  • Kremen, C. et al. Aligning conservation priorities across taxa in Madagascar with high-resolution planning tools. Science 320, 222–226 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cazalis, V. et al. Mismatch between bird species sensitivity and the protection of intact habitats across the Americas. Ecol. Lett. 24, 2394–2405 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Venter, O. et al. Targeting global protected area expansion for imperiled biodiversity. PLoS Biol. 12, e1001891 (2014).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Gamero, A. et al. Tracking progress toward EU biodiversity strategy targets: EU policy effects in preserving its common farmland birds. Conserv. Lett. 10, 395–402 (2017).

    Article 

    Google Scholar 

  • Pellissier, V. et al. Effects of Natura 2000 on nontarget bird and butterfly species based on citizen science data. Conserv. Biol. 34, 666–676 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Princé, K., Rouveyrol, P., Pellissier, V., Touroult, J. & Jiguet, F. Long-term effectiveness of Natura 2000 network to protect biodiversity: a hint of optimism for common birds. Biol. Conserv. 253, 108871 (2021).

    Article 

    Google Scholar 

  • Cunningham, C. A., Thomas, C. D., Morecroft, M. D., Crick, H. Q. P. & Beale, C. M. The effectiveness of the protected area network of Great Britain. Biol. Conserv. 257, 109146 (2021).

    Article 

    Google Scholar 

  • Duckworth, G. D. & Altwegg, R. Effectiveness of protected areas for bird conservation depends on guild. Divers. Distrib. 24, 1083–1091 (2018).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Rada, S. et al. Protected areas do not mitigate biodiversity declines: a case study on butterflies. Divers. Distrib. 25, 217–224 (2019).

    Article 

    Google Scholar 

  • Terraube, J., Van Doninck, J., Helle, P., & Cabeza, M. Assessing the effectiveness of a national protected area network for carnivore conservation. Nat. Commun. 11, 2957 (2020).

    Article 
    PubMed Central 
    CAS 
    PubMed 

    Google Scholar 

  • Lenoir, J. et al. Species better track the shifting isotherms in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).

    Article 
    PubMed 

    Google Scholar 

  • van Teeffelen, A., Meller, L., van Minnen, J., Vermaat, J. & Cabeza, M. How climate proof is the European Union’s biodiversity policy? Regional Environ. Change 15, 997–1010 (2015).

    Article 

    Google Scholar 

  • Thomas, C. D. & Gillingham, P. K. The performance of protected areas for biodiversity under climate change. Biol. J. Linn. Soc. Lond. 115, 718–730 (2015).

    Article 

    Google Scholar 

  • Gillingham, P. K. et al. The effectiveness of protected areas in the conservation of species with changing geographical ranges. Biol. J. Linn. Soc. Lond. 115, 707–717 (2015).

    Article 

    Google Scholar 

  • Geldmann, J. et al. Effectiveness of terrestrial protected areas in reducing habitat loss and population declines. Biol. Conserv. 161, 230–238 (2013).

    Article 

    Google Scholar 

  • Stokstad, E. Species? Climate? Cost? Ambitious goal means trade-offs. Science 371, 555 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Brlík, V. et al. Long-term and large-scale multispecies dataset tracking population changes of common European breeding birds. Sci. Data 8, 21 (2021).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Stanbury, A. et al. The status of bird populations: the fifth Birds of Conservation Concern in the United Kingdom, Channel Islands and Isle of Man and second IUCN Red List assessment of extinction risk for Great Britain. Br. Birds 114, 723–747 (2021).

    Google Scholar 

  • Dudley, N. (ed). Guidelines for Applying Protected Area Management Categories (IUCN, 2008).

  • Deguignet, M. et al. Measuring the extent of overlaps in protected area designations. PLoS ONE 12, e0188681 (2017).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar 

  • JNCC. Common Standards Monitoring: Introduction to the Guidance Manual (JNCC Resource Hub, 2004).

  • Hayhow, D. B. et al. State of Nature 2019 (RSPB, 2019).

  • Schleicher, J. et al. Statistical matching for conservation science. Conserv. Biol. 34, 538–549 (2019).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Waldron, A. et al. Protecting 30% of the Planet for Nature: Costs, Benefits and Economic Implications (Campaign for Nature, 2020); https://helda.helsinki.fi/handle/10138/326470

  • Franks, S. E., Roodbergen, M., Teunissen, W., Carrington Cotton, A. & Pearce‐Higgins, J. W. Evaluating the effectiveness of conservation measures for European grassland‐breeding waders. Ecol. Evol. 8, 10555–10568 (2018).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Pearce-Higgins, J. W. et al. Site-based adaptation reduces the negative effects of weather upon a southern range margin Welsh black grouse Tetrao tetrix population that is vulnerable to climate change. Clim. Change 153, 253–265 (2019).

    Article 

    Google Scholar 

  • Jellesmark, S. et al. A counterfactual approach to measure the impact of wet grassland conservation on U.K. breeding bird populations. Conserv. Biol. 35, 1575–1585 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Morrison, C. A. et al. Covariation in population trends and demography reveals targets for conservation action. Proc. Biol. Sci. 288, 20202955 (2021).

    PubMed Central 
    PubMed 

    Google Scholar 

  • Donald, P. F. et al. International conservation policy delivers benefits for birds in Europe. Science 317, 810–813 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Martay, B. et al. Monitoring landscape-scale environmental changes with citizen scientists: Twenty years of land use change in Great Britain. J. Nat. Conserv. 44, 33–42 (2018).

    Article 

    Google Scholar 

  • Sullivan, M. J. P., Newson, S. E. & Pearce‐Higgins, J. W. Changing densities of generalist species underlie apparent homogenization of UK bird communities. Ibis 158, 645–655 (2016).

    Article 

    Google Scholar 

  • Wauchope, H. S. et al. Evaluating impact using time-series data. Trends Ecol. Evol. 36, 196–205 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Devictor, V. et al. Differences in the climatic debts of birds and butterflies at a continental scale. Nat. Clim. Change 2, 121–124 (2012).

    Article 

    Google Scholar 

  • Lehikoinen, P., Santangeli, A., Jaatinen, K., Rajasärkkä, A. & Lehikoinen, A. Protected areas act as a buffer against detrimental effects of climate change—evidence from large‐scale, long‐term abundance data. Glob. Change Biol. 25, 304–313 (2019).

    Article 

    Google Scholar 

  • Gaüzère, P., Jiguet, F. & Devictor, V. Can protected areas mitigate the impacts of climate change on bird’s species and communities? Diversity Distrib. 22, 625–637 (2016).

    Article 

    Google Scholar 

  • Neate‐Clegg, M. H. C., Jones, S. E. I., Burdekin, O., Jocque, M. & Şekercioğlu, Ç. H. Elevational changes in the avian community of a Mesoamerican cloud forest park. Biotropica 50, 805–815 (2018).

    Article 

    Google Scholar 

  • Oliver, T. H. et al. Large extents of intensive land use limit community reorganization during climate warming. Glob. Change Biol. 23, 2272–2283 (2017).

    Article 

    Google Scholar 

  • Hiley, J. R., Bradbury, R. B., Holling, M. & Thomas, C. D. Protected areas act as establishment centres for species colonizing the UK. Proc. Biol. Sci. 280, 20122310 (2013).

    PubMed Central 
    PubMed 

    Google Scholar 

  • Thomas, C. D. et al. Protected areas facilitate species’ range expansions. Proc. Natl Acad. Sci. USA 109, 14063–14068 (2012).

    Article 
    PubMed Central 
    CAS 
    PubMed 

    Google Scholar 

  • Grace, M. K. et al. Testing a global standard for quantifying species recovery and assessing conservation impact. Conserv. Biol. 35, 1833–1849 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Gibbons, D. W., Reid, J. B. & Chapman, R. A. The New Atlas of Breeding Birds in Britain & Ireland 1988–1991 (T. & A. D. Poyser, 1993).

  • Balmer, D. E. et al. Bird Atlas 2007–11: the Breeding and Wintering Birds of Britain and Ireland (BTO, 2013).

  • Gillings, S. et al. Breeding and wintering bird distributions in Britain and Ireland from citizen science bird atlases. Glob. Ecol. Biogeogr. 28, 866–874 (2019).

    Article 

    Google Scholar 

  • Freeman, S. N., Noble, D. G., Newson, S. E. & Baillie, S. R. Modelling population changes using data from different surveys: the Common Birds Census and the Breeding Bird Survey. Bird Study 54, 61–72 (2007).

    Article 

    Google Scholar 

  • Robinson, R. A., Julliard, R. & Saracco, J. F. Constant effort: studying avian population processes using standardised ringing. Ring. Migr. 24, 199–204 (2009).

    Article 

    Google Scholar 

  • Cave, V. M., Freeman, S. N., Brooks, S. P., King, R. & Balmer, D. E. in Modeling Demographic Processes in Marked Populations, 949–963 (Springer, 2009).

  • Rowland, C. S. et al. Land Cover Map 2015 (1km Percentage Aggregate Class, GB) (eds Thomson, D. L. et al) (Environmental Information Data Centre, 2017); https://doi.org/10.5285/7115bc48-3ab0-475d-84ae-fd3126c20984

  • Rowland, C. S. et al. Land Cover Map 2015 (1km Percentage Aggregate Class, N. Ireland) (Environmental Information Data Centre, 2017); https://doi.org/10.5285/362feaea-0ccf-4a45-b11f-980c6b89a858

  • ASTER Global Digital Elevation Model V003 (dataset). NASA EOSDIS Land Processes DAAC (NASA/METI/AIST/Japan Space Systems and U.S./Japan ASTER Science Team, 2019); https://doi.org/10.5067/ASTER/ASTGTM.003

  • Schiavina, M., Freire, S. & MacManus, K. GHS-SMOD R2019A – GHS Settlement Layers, Updated and Refined REGIO Model 2014 in Application to GHS-BUILT R2018A and GHS-POP R2019A, Multitemporal (1975-1990-2000-2015) (European Commission Joint Research Centre, 2019); https://doi.org/10.2905/42E8BE89-54FF-464E-BE7B-BF9E64DA5218

  • Robinson, R. A. BirdFacts: Profiles of Birds Occurring in Britain & Ireland (BTO, 2005).

  • Gibbons, D. W. et al. Bird species of conservation concern in the United Kingdom, Channel Islands and Isle of Man: revising the Red Data List. RSPB Conserv. Rev. 10, 7–18 (1996).

    Google Scholar 

  • Stone, B. H. et al. Population estimates of birds in Britain and in the United Kingdom. Br. Birds 90, 1–22 (1997).

    Google Scholar 

  • Woodward, I. et al. Population estimates of birds in Great Britain and the United Kingdom. Br. Birds 113, 69–104 (2020).

    Google Scholar 

  • R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Joppa, L. N. & Pfaff, A. High and far: biases in the location of protected areas. PLoS ONE 4, e8273 (2009).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Bull, J. W., Strange, N., Smith, R. J. & Gordon, A. Reconciling multiple counterfactuals when evaluating biodiversity conservation impact in social‐ecological systems. Conserv. Biol. 35, 510–521 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Jellesmark, S. et al. Assessing the global impact of targeted conservation actions on species abundance. Preprint at bioRxiv https://doi.org/10.1101/2022.01.14.476374 (2022).

  • Wauchope, H. S. et al. Protected areas have a mixed impact on waterbirds but management helps. Nature 605, 103–107 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ho, D. E., Imai, K., King, G. & Stuart, E. A. MatchIt: nonparametric preprocessing for parametric causal inference. J. Stat. Softw. 42, 1–28 (2011).

    Article 

    Google Scholar 

  • Wood, S. N. Generalized Additive Models: an Introduction with R 2nd edn (Chapman and Hall/CRC, 2017).

  • Hartig, F. DHARMa: Residual diagnostics for hierarchical (multi-level/mixed) regression models. R package v.0.4.4 (2021); https://CRAN.R-project.org/package=DHARMa

  • Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).

    Article 

    Google Scholar 

  • Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Johnston, A. et al. Species traits explain variation in detectability of UK birds. Bird Study 61, 340–350 (2014).

    Article 

    Google Scholar 

  • Hill, M. O. Diversity and evenness: a unifying notation and its consequences. Ecology 54, 427–432 (1973).

    Article 

    Google Scholar 

  • Ho, D. E., Imai, K., King, G. & Stuart, E. A. Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference. Political Anal. 15, 199–236 (2007).

    Article 

    Google Scholar 

  • Julliard, R., Clavel, J., Devictor, V., Jiguet, F. & Couvet, D. Spatial segregation of specialists and generalists in bird communities. Ecol. Lett. 9, 1237–1244 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Devictor, V., Julliard, R., Couvet, D. & Jiguet, F. Birds are tracking climate warming, but not fast enough. Proc. Biol. Sci. 275, 2743–2748 (2008).

    PubMed Central 
    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    Comparison of the effects of litter decomposition process on soil erosion under simulated rainfall

    World leaders must step up to put biodiversity deal on path to success