in

Reactive nitrogen restructures and weakens microbial controls of soil N2O emissions

  • Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kanter, D. R. et al. Nitrogen pollution policy beyond the farm. Nat. Food 1, 27–32 (2020).

    Google Scholar 

  • Tian, H. Q. et al. A comprehensive quantification of global nitrous oxide sources and sinks. Nature 586, 248–256 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Thompson, R. L. et al. Acceleration of global N2O emissions seen from two decades of atmospheric inversion. Nat. Clim. Change 9, 993–998 (2019).

    CAS 

    Google Scholar 

  • Isobe, K., Allison, S. D., Khalili, B., Martiny, A. C. & Martiny, J. B. H. Phylogenetic conservation of bacterial responses to soil nitrogen addition across continents. Nat. Commun. 10, 2499 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Dai, Z. M. et al. Long-term nitrogen fertilization decreases bacterial diversity and favors the growth of Actinobacteria and Proteobacteria in agro-ecosystems across the globe. Glob. Change Biol. 24, 3452–3461 (2018).

    Google Scholar 

  • Wallenstein, M., Myrold, D., Firestone, M. & Voytek, M. Environmental controls on denitrifying communities and denitrification rates: insights from molecular methods. Ecol. Appl 16, 2143–2152 (2006).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Scheer, C., Fuchs, K., Pelster, D. E. & Butterbach-Bahl, K. Estimating global terrestrial denitrification from measured N2O:(N2O + N2) product ratios. Curr. Opin. Enviro 47, 72–80 (2020).

    Google Scholar 

  • Inatomi, M., Hajima, T. & Ito, A. Fraction of nitrous oxide production in nitrification and its effect on total soil emission: a meta-analysis and global-scale sensitivity analysis using a process-based model. PLoS One 14, e0219159 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liang, D. & Robertson, G. P. Nitrification is a minor source of nitrous oxide (N2O) in an agricultural landscape and declines with increasing management intensity. Glob. Change Biol. 27, 5599–5613 (2021).

    Google Scholar 

  • Zumft, W. G. Cell biology and molecular basis of denitrification. Microbiol Mol. Biol. R. 61, 533–616 (1997).

    CAS 

    Google Scholar 

  • Graf, D. R. H., Jones, C. M. & Hallin, S. Intergenomic comparisons highlight modularity of the denitrification pathway and underpin the importance of community structure for N2O emissions. PLoS One 9, e114118 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lycus, P. et al. Phenotypic and genotypic richness of denitrifiers revealed by a novel isolation strategy. ISME J. 11, 2219–2232 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Roco, C. A., Bergaust, L. L., Bakken, L. R., Yavitt, J. B. & Shapleigh, J. P. Modularity of nitrogen-oxide reducing soil bacteria: linking phenotype to genotype. Environ. Microbiol 19, 2507–2519 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hallin, S., Philippot, L., Loffler, F. E., Sanford, R. A. & Jones, C. M. Genomics and ecology of novel N2O-reducing microorganisms. Trends Microbiol 26, 43–55 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Philippot, L., Andert, J., Jones, C. M., Bru, D. & Hallin, S. Importance of denitrifiers lacking the genes encoding the nitrous oxide reductase for N2O emissions from soil. Glob. Change Biol. 17, 1497–1504 (2011).

    Google Scholar 

  • Domeignoz-Horta, L. A. et al. Non-denitrifying nitrous oxide-reducing bacteria—an effective N2O sink in soil. Soil Biol. Biochem 103, 376–379 (2016).

    CAS 

    Google Scholar 

  • Ramirez, K. S., Craine, J. M. & Fierer, N. Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Glob. Change Biol. 18, 1918–1927 (2012).

    Google Scholar 

  • Leff, J. W. et al. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc. Natl. Acad. Sci. USA 112, 10967–10972 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shi, S. et al. The interconnected rhizosphere: high network complexity dominates rhizosphere assemblages. Ecol. Lett. 19, 926–936 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang, R. L. et al. Plant-microbe networks in soil are weakened by century-long use of inorganic fertilizers. Micro. Biotechnol. 12, 1464–1475 (2019).

    CAS 

    Google Scholar 

  • Tylianakis, J. M. & Morris, R. J. Ecological networks across environmental gradients. Annu. Rev. Ecol. Evol. S 48, 25–48 (2017).

    Google Scholar 

  • Geisseler, D. & Scow, K. M. Long-term effects of mineral fertilizers on soil microorganisms—a review. Soil Biol. Biochem 75, 54–63 (2014).

    CAS 

    Google Scholar 

  • Simek, M. & Cooper, J. The influence of soil pH on denitrification: progress towards the understanding of this interaction over the last 50 years. Eur. J. Soil Sci. 53, 345–354 (2002).

    CAS 

    Google Scholar 

  • Klemedtsson, L., von Arnold, K., Weslien, P. & Gundersen, P. Soil CN ratio as a scalar parameter to predict nitrous oxide emissions. Glob. Change Biol. 11, 1142–1147 (2005).

    Google Scholar 

  • Parn, J. et al. Nitrogen-rich organic soils under warm well-drained conditions are global nitrous oxide emission hotspots. Nat. Commun. 9, 1135 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Maeda, K. et al. Relative contribution of nirK-and nirS-bacterial denitrifiers as well as fungal denitrifiers to nitrous oxide production from dairy manure compost. Environ. Sci. Technol. 51, 14083–14091 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Coyotzi, S. et al. Agricultural soil denitrifiers possess extensive nitrite reductase gene diversity. Environ. Microbiol 19, 1189–1208 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nadeau, S. A. et al. Metagenomic analysis reveals distinct patterns of denitrification gene abundance across soil moisture, nitrate gradients. Environ. Microbiol 21, 1255–1266 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Enwall, K., Throbäck, I. N., Stenberg, M., Söderström, M. & Hallin, S. Soil resources influence spatial patterns of denitrifying communities at scales compatible with land management. Appl Environ. Microbiol 76, 2243–2250 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jones, C. M. & Hallin, S. Ecological and evolutionary factors underlying global and local assembly of denitrifier communities. ISME J. 4, 633–641 (2010).

    PubMed 

    Google Scholar 

  • Silverman, J. D., Washburne, A. D., Mukherjee, S. & David, L. A. A phylogenetic transform enhances analysis of compositional microbiota data. eLife 6, 5721 (2017).

    Google Scholar 

  • Magurran, A. E. & Henderson, P. A. Explaining the excess of rare species in natural species abundance distributions. Nature 422, 714–716 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dai, Z. et al. Long-term nitrogen fertilization decreases bacterial diversity and favors the growth of Actinobacteria and Proteobacteriain agro-ecosystems across the globe. Glob. Change Biol. 24, 3452–3461 (2018).

    Google Scholar 

  • Fierer, N. et al. Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME J. 6, 1007–1017 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Naether, A. et al. Environmental factors affect acidobacterial communities below the subgroup level in grassland and forest soils. Appl Environ. Microbiol. 78, 7398–7406 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Navarrete, A. A. et al. Differential response of Acidobacteria subgroups to forest-to-pasture conversion and their biogeographic patterns in the Western Brazilian Amazon. Front. Microbiol. 6, 1443 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Jones, C. M., Stres, B., Rosenquist, M. & Hallin, S. Phylogenetic analysis of nitrite, nitric oxide, and nitrous oxide respiratory enzymes reveal a complex evolutionary history for denitrification. Mol. Biol. Evol. 25, 1955–1966 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Kuypers, M. M. M., Marchant, H. K. & Kartal, B. The microbial nitrogen-cycling network. Nat. Rev. Microbiol 16, 263–274 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Zhou, J., Deng, Y., Luo, F., He, Z. & Yang, Y. Phylogenetic molecular ecological network of soil microbial communities in response to elevated CO2. MBio 2, e00122-00111–e00122-00111 (2011).

    Google Scholar 

  • Huang, R. et al. Plant–microbe networks in soil are weakened by century‐long use of inorganic fertilizers. Micro. Biotechnol. 12, 1464–1475 (2019).

    CAS 

    Google Scholar 

  • Bar-Massada, A. Complex relationships between species niches and environmental heterogeneity affect species co-occurrence patterns in modelled and real communities. Proc. Royal Soc. B 282, 20150927 (2015).

    Google Scholar 

  • Boccaletti, S., Latora, V., Moreno, Y., Chavez, M. & Hwang, D. U. Complex networks: structure and dynamics. Phys. Rep. 424, 175–308 (2006).

    Google Scholar 

  • Yuan, M. M. et al. Climate warming enhances microbial network complexity and stability. Nat. Clim. Change 11, 343–U100 (2021).

    Google Scholar 

  • Freilich, S. et al. The large-scale organization of the bacterial network of ecological co-occurrence interactions. Nucleic Acids Res. 38, 3857–3868 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Samad, M. D. S. et al. Phylogenetic and functional potential links pH and N2O emissions in pasture soils. Sci. Rep. 6, 35990 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, Y. et al. Soil pH as the chief modifier for regional nitrous oxide emissions: new evidence and implications for global estimates and mitigation. Glob. Change Biol. 24, E617–E626 (2018).

    Google Scholar 

  • Jones, C. M. et al. Recently identified microbial guild mediates soil N2O sink capacity. Nat. Clim. Change 4, 801–805 (2014).

    CAS 

    Google Scholar 

  • Dorsch, P., Braker, G. & Bakken, L. R. Community-specific pH response of denitrification: experiments with cells extracted from organic soils. FEMS Microbiol Ecol. 79, 530–541 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Linton, N. F., Machado, P. V. F., Deen, B., Wagner-Riddle, C. & Dunfield, K. E. Long-term diverse rotation alters nitrogen cycling bacterial groups and nitrous oxide emissions after nitrogen fertilization. Soil Biol. Biochem 149, 107917 (2020).

    CAS 

    Google Scholar 

  • Xu, X. Y. et al. nosZ clade II rather than clade I determine in situ N2O emissions with different fertilizer types under simulated climate change and its legacy. Soil Biol. Biochem 150, 107974 (2020).

    CAS 

    Google Scholar 

  • Philippot, L. et al. Loss in microbial diversity affects nitrogen cycling in soil. ISME J. 7, 1609–1619 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Delgado-Baquerizo, M., Grinyer, J., Reich, P. B. & Singh, B. K. Relative importance of soil properties and microbial community for soil functionality: insights from a microbial swap experiment. Funct. Ecol. 30, 1862–1873 (2016).

    Google Scholar 

  • Kottek, M., Grieser, J., Beck, C., Rudolf, B. & Rubel, F. World map of the Köppen–Geiger climate classification updated. Meteorol. Z. 15, 259–263 (2006).

    Google Scholar 

  • Lu, C. Q. & Tian, H. Q. Global nitrogen and phosphorus fertilizer use for agriculture production in the past half century: shifted hot spots and nutrient imbalance. Earth Syst. Sci. Data 9, 181–192 (2017).

    Google Scholar 

  • Van Meter, K. J., Basu, N. B., Veenstra, J. J. & Burras, C. L. The nitrogen legacy: emerging evidence of nitrogen accumulation in anthropogenic landscapes. Environ. Res. Lett. 11, 035014–035013 (2016).

    Google Scholar 

  • Takahashi, S., Tomita, J., Nishioka, K., Hisada, T. & Nishijima, M. Development of a prokaryotic universal primer for simultaneous analysis of bacteria and archaea using next-generation sequencing. PLoS One 9, e105592 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: a fast and accurate illumina paired-end reAd mergeR. Bioinformatics 30, 614–620 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Pruesse, E., Peplies, J. & Glöckner, F. O. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28, 1823–1829 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ludwig, W. et al. ARB: a software environment for sequence data. Nucleic Acids Res. 32, 1363–1371 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Oksanen J. vegan: Community Ecology Package version 1.8–5 (Semantic Scholar, 2007).

  • McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8, e61217 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Palarea-Albaladejo, J. & Martin-Fernandez, J. A. zCompositions—R package for multivariate imputation of left-censored data under a compositional approach. Chemom. Intell. Lab 143, 85–96 (2015).

    CAS 

    Google Scholar 

  • Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).

    Google Scholar 

  • Csardi, G. & Nepusz, T. The igraph software package for complex network research. Int. J. Complex Syst. 1695, 1–9 (2006).

    Google Scholar 

  • Menzel, U. RMThreshold: Signal-Noise Separation in Random Matrices by Using Eigenvalue. R Package Version 1.1 edn. https://rdrr.io/cran/RMThreshold/man/RMThreshold-package.html (2016).

  • Gu, Z. G., Gu, L., Eils, R., Schlesner, M. & Brors, B. circlize implements and enhances circular visualization in R. Bioinformatics 30, 2811–2812 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Goenawan, I. H., Bryan, K. & Lynn, D. J. DyNet: visualization and analysis of dynamic molecular interaction networks. Bioinformatics 32, 2713–2715 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jones, C. M. & Hallin, S. Geospatial variation in co-occurrence networks of nitrifying microbial guilds. Mol. Ecol. 28, 293–306 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Newman, M. E. J. & Girvan, M. Finding and evaluating community structure in networks. Phys. Rev. E 69, 268–215 (2004).

    Google Scholar 

  • Deng, Y. et al. Molecular ecological network analyses. BMC Bioinform. 13, 113 (2012).

    Google Scholar 

  • Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 77, 802–813 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dormann, C. F. et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2012).

    Google Scholar 

  • Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 28, 1–26 (2008).

    Google Scholar 

  • Greenwell, B. M. & Boehmke, B. C. Variable importance plots-an introduction to the vip package. R. J. 12, 343–366 (2020).

    Google Scholar 

  • Molnar, C. iml: An R package for Interpretable. Mach. Learn. J. Open Source Softw. 3, 786 (2018).

    Google Scholar 


  • Source: Ecology - nature.com

    An intergenerational approach to parasitoid fitness determined using clutch size

    Q&A: Climate Grand Challenges finalists on new pathways to decarbonizing industry