in

Recent and rapid ecogeographical rule reversals in Northern Treeshrews

  • Millien, V. et al. Ecotypic variation in the context of global climate change: Revisiting the rules. Ecol. Lett. 9, 853–869 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Calder, W. A. Size, Function and Life History (Harvard University Press, 1984).

    Google Scholar 

  • Bergmann, C. Über die verhältnisse der wärmeökonomie der thiere zu ihrer grösse. Göttinger Stud. 3, 595–708 (1847).

    Google Scholar 

  • Mayr, E. Geographical character gradients and climatic adaptation. Evolution 10, 105–108 (1956).

    Article 

    Google Scholar 

  • Riddell, E. A., Iknayan, K. J., Wolf, B. O., Sinervo, B. & Beissinger, S. R. Cooling requirements fueled the collapse of a desert bird community from climate change. PNAS 116, 21609–21615 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • Foster, J. B. Evolution of mammals on islands. Nature 202, 234–235 (1964).

    Article 
    ADS 

    Google Scholar 

  • Lomolino, M. V. Body size evolution in insular vertebrates: Generality of the island rule. J. Biogeogr. 32, 1683–1699 (2005).

    Article 

    Google Scholar 

  • Benítez-López, A. et al. The island rule explains consistent patterns of body size evolution in terrestrial vertebrates. Nat. Ecol. Evol. 5, 768–786 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Meiri, S. & Dayan, T. On the validity of Bergmann’s rule. J. Biogeogr. 30, 331–351 (2003).

    Article 

    Google Scholar 

  • Meiri, S., Cooper, N. & Purvis, A. The island rule: Made to be broken?. Proc. R. Soc. B. 275, 141–148 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Millien, V. Relative effects of climate change, isolation and competition on body-size evolution in the Japanese field mouse, Apodemus argenteus. J. Biogeogr. 31, 1267–1276 (2004).

    Article 

    Google Scholar 

  • Millien, V. & Damuth, J. Climate change and size evolution in an island rodent species: New perspectives on the island rule. Evolution 58, 1353–1360 (2004).

    Article 
    PubMed 

    Google Scholar 

  • Lomolino, M. V., Sax, D. F., Riddle, B. R. & Brown, J. H. The island rule and a research agenda for studying ecogeographical patterns. J. Biogeogr. 33, 1503–1510 (2006).

    Article 

    Google Scholar 

  • Sargis, E. J., Millien, V., Woodman, N. & Olson, L. E. Rule reversal: Ecogeographical patterns of body size variation in the common treeshrew (Mammalia, Scandentia). Ecol. Evol. 8, 1634–1645 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Barnosky, A. D., Hadly, E. A. & Bell, C. J. Mammalian response to global warming on varied temporal scales. J. Mammal. 84, 354–368 (2003).

    <a data-track="click" rel="nofollow noopener" data-track-label="10.1644/1545-1542(2003)0842.0.CO;2″ data-track-action=”article reference” href=”https://doi.org/10.1644%2F1545-1542%282003%29084%3C0354%3AMRTGWO%3E2.0.CO%3B2″ aria-label=”Article reference 15″ data-doi=”10.1644/1545-1542(2003)0842.0.CO;2″>Article 

    Google Scholar 

  • Sheridan, J. A. & Bickford, D. Shrinking body size as an ecological response to climate change. Nat. Clim. Change 1, 401–406 (2011).

    Article 
    ADS 

    Google Scholar 

  • Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L. & Heinsohn, R. Declining body size: A third universal response to warming? Trends Ecol. Evol. 26, 285–291 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Teplitsky, C., Mills, J. A., Alho, J. S., Yarrall, J. W. & Merilä, J. Bergmann’s rule and climate change revisited: Disentangling environmental and genetic responses in a wild bird population. PNAS 105, 13492–13496 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • Teplitsky, C. & Millien, V. Climate warming and Bergmann’s rule through time: Is there any evidence?. Evol. Appl. 7, 156–168 (2014).

    Article 
    PubMed 

    Google Scholar 

  • James, F. C. Geographic size variation in birds and its relationship to climate. Ecology 51, 385–390 (1970).

    Article 

    Google Scholar 

  • Wigginton, J. D. & Dobson, F. S. Environmental influences on geographic variation in body size of western bobcats. Can. J. Zool. 77, 802–813 (1999).

    Article 

    Google Scholar 

  • Yom-Tov, Y. & Geffen, E. Geographic variation in body size: The effects of ambient temperature and precipitation. Oecologia 148, 213–218 (2006).

    Article 
    PubMed 
    ADS 

    Google Scholar 

  • Wagner, J. A. Schreber’s saugthiere, supplementband, 2. Abtheilung 1841(37–44), 553 (1841).

    Google Scholar 

  • Hawkins, M. T. Family Tupaiidae (treeshrews). In Handbook of the Mammals of the World, Volume 8 Insectivores, Sloths and Colugos (eds Wilson, D. E. & Mittermeier, R. A.) (Lynx Edicions, 2018).

    Google Scholar 

  • Roberts, T. E., Lanier, H. C., Sargis, E. J. & Olson, L. E. Molecular phylogeny of treeshrews (Mammalia: Scandentia) and the timescale of diversification in Southeast Asia. Mol. Phylogenet. Evol. 60, 358–372 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Zhang, L., Yang, F., Wang, Z. K. & Zhu, W. L. Role of thermal physiology and bioenergetics on adaptation in tree shrew (Tupaia belangeri): The experiment test. Sci. Rep. 7, 41352 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • Zhu, W., Zhang, H. & Wang, Z. Seasonal changes in body mass and thermogenesis in tree shrews (Tupaia belangeri): The roles of photoperiod and cold. J. Therm. Biol. 37, 479–484 (2012).

    Article 

    Google Scholar 

  • Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).

    Book 
    MATH 

    Google Scholar 

  • South, A. rnaturalearth: World Map Data from Natural Earth. R package version 0.1.0 (2017).

  • Dunnington, D. ggspatial: Spatial Data Framework for ggplot2. R package version 1.1.4 (2020).

  • R Core Team. R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2018).

  • Helgen, K. M. Order Scandentia. In Mammal Species of the World: A Taxonomic and Geographic Reference 3rd edn (eds Wilson, D. E. & Reeder, D. M.) (Johns Hopkins University Press, 2005).

    Google Scholar 

  • Collins, P. M. & Tsang, W. N. Growth and reproductive development in the male tree shrew (Tupaia belangeri) from birth to sexual maturity. Biol. Reprod. 37, 261–267 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Heaney, L. R. Island area and body size of insular mammals: Evidence from the tri-colored squirrel (Callosciurus prevosti) of Southeast Asia. Evolution 32, 29–44 (1978).

    PubMed 

    Google Scholar 

  • Husson, L., Boucher, F. C., Sarr, A. C., Sepulchre, P. & Cahyarini, S. Y. Evidence of Sundaland’s subsidence requires revisiting its biogeography. J. Biogeogr. 47, 843–853 (2020).

    Article 

    Google Scholar 

  • Juman, M. M., Woodman, N., Olson, L. E. & Sargis, E. J. Ecogeographic variation and taxonomic boundaries in Large Treeshrews (Scandentia, Tupaiidae: Tupaia tana Raffles, 1821) from Southeast Asia. J. Mammal. 102, 1054–1066 (2021).

    Article 

    Google Scholar 

  • Hinckley, A. et al. Challenging ecogeographical rules: Phenotypic variation in the Mountain Treeshrew (Tupaia montana) along tropical elevational gradients. PLoS ONE 17, e0268213 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lomolino, M. V., Sax, D. F., Palombo, M. R. & van der Geer, A. A. Of mice and mammoths: evaluations of causal explanations for body size evolution in insular mammals. J. Biogeogr. 39, 842–854 (2011).

    Article 

    Google Scholar 

  • Teta, P., de la Sancha, N. U., D’Elía, G. & Patterson, B. D. Andean rain shadow effect drives phenotypic variation in a widely distributed Austral rodent. J. Biogeogr. 49, 1767–1778 (2022).

    Article 

    Google Scholar 

  • Yom-Tov, Y. & Yom-Tov, S. Climatic change and body size in two species of Japanese rodents. Biol. J. Linn. Soc. 82, 263–267 (2004).

    Article 

    Google Scholar 

  • Yom-Tov, Y. & Yom-Tov, J. Global warming, Bergmann’s rule and body size in the masked shrew Sorex cinereus in Alaska. J. Anim. Ecol. 74, 803–808 (2005).

    Article 

    Google Scholar 

  • Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. PNAS 105, 6668–6672 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • Newbold, T., Oppenheimer, P., Etard, A. & Williams, J. J. Tropical and Mediterranean biodiversity is disproportionately sensitive to land-use and climate change. Nat. Ecol. Evol. 4, 1630–1638 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Cronk, Q. C. B. Islands: stability, diversity, conservation. Biodivers. Conserv. 6, 477–493 (1997).

    Article 

    Google Scholar 

  • Kier, G. et al. A global assessment of endemism and species richness across island and mainland regions. PNAS 106, 9322–9327 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • Yom-Tov, Y. & Geffen, E. Recent spatial and temporal changes in body size of terrestrial vertebrates: Probable causes and pitfalls. Biol. Rev. 86, 531–541 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Theriot, M. K., Lanier, H. C. & Olson, L. E. Harnessing natural history collections to detect trends in body-size change as a response to warming: A critique and review of best practices. Methods Ecol. Evol. (2022).

  • Rohwer, V. G., Rohwer, Y. & Dillman, C. B. Declining growth of natural history collections fails future generations. PLoS Biol. 20, e3001613 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sargis, E. J., Woodman, N., Morningstar, N. C., Reese, A. T. & Olson, L. E. Morphological distinctiveness of Javan Tupaia hypochrysa (Scandentia, Tupaiidae). J. Mammal. 94, 938–947 (2013).

    Article 

    Google Scholar 

  • Sargis, E. J., Woodman, N., Morningstar, N. C., Reese, A. T. & Olson, L. E. Island history affects faunal composition: The treeshrews (Mammalia: Scandentia: Tupaiidae) from the Mentawai and Batu Islands, Indonesia. Biol. J. Linn. Soc. 111, 290–304 (2014).

    Article 

    Google Scholar 

  • Sargis, E. J., Campbell, K. K. & Olson, L. E. Taxonomic boundaries and craniometric variation in the treeshrews (Scandentia, Tupaiidae) from the Palawan faunal region. J. Mamm. Evol. 21, 111–123 (2014).

    Article 

    Google Scholar 

  • Sargis, E. J., Woodman, N., Morningstar, N. C., Bell, T. N. & Olson, L. E. Skeletal variation and taxonomic boundaries among mainland and island populations of the common treeshrew (Mammalia: Scandentia: Tupaiidae). Biol. J. Linn. Soc. 120, 286–312 (2017).

    Google Scholar 

  • Juman, M. M., Olson, L. E. & Sargis, E. J. Skeletal variation and taxonomic boundaries in the Pen-tailed Treeshrew (Scandentia, Ptilocercidae: Ptilocercus lowii Gray, 1848). J. Mamm. Evol. 28, 1193–1203 (2021).

    Article 

    Google Scholar 

  • Juman, M. M., Woodman, N., Miller-Murthy, A., Olson, L. E. & Sargis, E. J. Taxonomic boundaries in Lesser Treeshrews (Scandentia, Tupaiidae: Tupaia minor Günther, 1876). J. Mammal. https://doi.org/10.1093/jmammal/gyac080 (2022).

    Article 

    Google Scholar 

  • Woodman, N., Miller-Murthy, A., Olson, L. E. & Sargis, E. J. Coming of age: Morphometric variation in the hand skeletons of juvenile and adult Lesser Treeshrews (Scandentia: Tupaiidae: Tupaia minor Günther, 1876). J. Mammal. 101, 1151–1164 (2020).

    Article 

    Google Scholar 

  • Chamberlain, S., Barve, V., Mcglinn, D., Oldoni, D., Desmet, P., Geffert, L. & Ram, K. rgbif: Interface to the Global Biodiversity Information Facility API. R package version 3.7.2, https://CRAN.R-project.org/package=rgbif.

  • Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data. 7, 109 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Meiyappan, P. & Jain, A. K. Three distinct global estimates of historical land-cover change and land-use conversions for over 200 years. Front. Earth Sci. 6, 122–139 (2012).

    Article 
    ADS 

    Google Scholar 

  • Ryan, W. B. F. et al. Global multi-resolution topography synthesis. Geochem. Geophys. 10, Q03014 (2009).

    Google Scholar 

  • van Buuren, S. & Groothuis-Oudshoorn, K. mice: Multivariate imputation by chained equations in R. J. Stat. Softw. 45, 1–67 (2011).

    Article 

    Google Scholar 

  • Clavel, J., Merceron, G. & Escarguel, G. Missing data estimation in morphometrics: How much is too much? Syst. Biol. 63, 203–218 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Nally, R. M. & Walsh, C. J. Hierarchical partitioning public-domain software. Biodivers. Conserv. 13, 659–660 (2004).

    Article 

    Google Scholar 

  • Bivand, R. S., Pebesma, E. & Gomez-Rubio, V. Applied Spatial Data Analysis with R 2nd edn. (Springer, 2013).

    Book 
    MATH 

    Google Scholar 


  • Source: Ecology - nature.com

    MIT Policy Hackathon produces new solutions for technology policy challenges

    A breakthrough on “loss and damage,” but also disappointment, at UN climate conference