in

Recent global decline in rainfall interception loss due to altered rainfall regimes

  • Savenije, H. H. G. The importance of interception and why we should delete the term evapotranspiration from our vocabulary. Hydrol. Process. 18, 1507–1511 (2004).

    Article 
    ADS 

    Google Scholar 

  • Gerrits, A. M. J., Pfister, L. & Savenije, H. H. G. Spatial and temporal variability of canopy and forest floor interception in a beech forest. Hydrol. Process. 24, 3011–3025 (2010).

    Article 
    ADS 

    Google Scholar 

  • Porada, P., Van Stan, J. T. & Kleidon, A. Significant contribution of non-vascular vegetation to global rainfall interception. Nat. Geosci. 11, 563–567 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • van der Ent, R. J., Wang-Erlandsson, L., Keys, P. W. & Savenije, H. H. G. Contrasting roles of interception and transpiration in the hydrological cycle – Part 2: moisture recycling. Earth Syst. Dyn. 5, 471–489 (2014).

    Article 
    ADS 

    Google Scholar 

  • Lian, X. et al. Partitioning global land evapotranspiration using CMIP5 models constrained by observations. Nat. Clim. Change 8, 640–646 (2018).

    Article 
    ADS 

    Google Scholar 

  • Coenders-Gerrits, A. M. et al. Uncertainties in transpiration estimates. Nature 506, E1–E2 (2014).

    Article 
    CAS 

    Google Scholar 

  • Chang, L.-L. et al. Why do large-scale land surface models produce a low ratio of transpiration to evapotranspiration? J. Geophys. Res. Atmos. 123, 9109–9130 (2018).

    Article 

    Google Scholar 

  • Zwieback, S., Chang, Q., Marsh, P. & Berg, A. Shrub tundra ecohydrology: rainfall interception is a major component of the water balance. Environ. Res. Lett. 14, 055005 (2019).

    Article 
    ADS 

    Google Scholar 

  • Cuartas, L. A. et al. Interception water-partitioning dynamics for a pristine rainforest in Central Amazonia: Marked differences between normal and dry years. Agric. For. Meteorol. 145, 69–83 (2007).

    Article 
    ADS 

    Google Scholar 

  • Yue, K. et al. Global patterns and drivers of rainfall partitioning by trees and shrubs. Glob. Change Biol. 27, 3350–3357 (2021).

    Article 

    Google Scholar 

  • Pastorello, G. et al. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data 7, 225 (2020).

    Article 

    Google Scholar 

  • Tramontana, G. et al. Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms. Biogeosciences 13, 4291–4313 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Jung, M., Reichstein, M. & Bondeau, A. Towards global empirical upscaling of FLUXNET eddy covariance observations: validation of a model tree ensemble approach using a biosphere model. Biogeosciences 6, 2001–2013 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Li, X. et al. Spatiotemporal pattern of terrestrial evapotranspiration in China during the past thirty years. Agric. For. Meteorol. 259, 131–140 (2018).

    Article 
    ADS 

    Google Scholar 

  • Koppa, A., Rains, D., Hulsman, P., Poyatos, R. & Miralles, D. G. A deep learning-based hybrid model of global terrestrial evaporation. Nat. Commun. 13, 1912 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Zheng, C. & Jia, L. Global canopy rainfall interception loss derived from satellite Earth observations. Ecohydrology 13, e2186 (2019).

    Google Scholar 

  • Muzylo, A. et al. A review of rainfall interception modelling. J. Hydrol. 370, 191–206 (2009).

    Article 
    ADS 

    Google Scholar 

  • Miralles, D. G., Gash, J. H., Holmes, T. R. H., de Jeu, R. A. M., & Dolman, A. J. Global canopy interception from satellite observations. J. Geophys. Res. 115, D16122 (2010).

    Article 
    ADS 

    Google Scholar 

  • Martens, B. et al. GLEAM v3: satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev. 10, 1903–1925 (2017).

    Article 
    ADS 

    Google Scholar 

  • Oleson, K. et al. Technical Description of Version 4.5 of the Community Land Model (CLM) Report NCAR/TN-503+STR, https://doi.org/10.5065/D6RR1W7M (2013).

  • Gash, J. An analytical model of rainfall interception by forests. Q. J. Roy. Meteor. Soc. 105, 43–55 (1979).

    Article 
    ADS 

    Google Scholar 

  • Fan, Y. et al. Reconciling canopy interception parameterization and rainfall forcing frequency in the Community Land Model for simulating evapotranspiration of rainforests and oil palm plantations in Indonesia. J. Adv. Model. Earth Syst. 11, 732–751 (2019).

    Article 
    ADS 

    Google Scholar 

  • Návar, J. Modeling rainfall interception loss components of forests. J. Hydrol. 584, 124449 (2019).

    Article 

    Google Scholar 

  • Kang, M., Kwon, H., Cheon, J. H. & Kim, J. On estimating wet canopy evaporation from deciduous and coniferous forests in the Asian monsoon climate. J. Hydrometeorol. 13, 950–965 (2012).

    Article 
    ADS 

    Google Scholar 

  • Llorens, P., Domingo, F., Garcia-Estringana, P., Muzylo, A. & Gallart, F. Canopy wetness patterns in a Mediterranean deciduous stand. J. Hydrol. 512, 254–262 (2014).

    Article 
    ADS 

    Google Scholar 

  • Czikowsky, M. J. & Fitzjarrald, D. R. Detecting rainfall interception in an Amazonian rain forest with eddy flux measurements. J. Hydrol. 377, 92–105 (2009).

    Article 
    ADS 

    Google Scholar 

  • Renninger, H. J., Phillips, N. & Salvucci, G. D. Wet- vs. dry-season transpiration in an Amazonian rain forest palm iriartea deltoidea. Biotropica 42, 470–478 (2010).

    Article 

    Google Scholar 

  • Zhao, W. et al. Physics-constrained machine learning of evapotranspiration. Geophys. Res. Lett. 46, 14496–14507 (2019).

    Article 
    ADS 

    Google Scholar 

  • Zabret, K. & Šraj, M. How characteristics of a rainfall event and the meteorological conditions determine the development of stemflow: A case study of a birch tree. Front. Glob. Change 4, 663100 (2022).

    Article 

    Google Scholar 

  • Calder, I. R. Dependence of rainfall interception on drop size: 1. Development of the two-layer stochastic model. J. Hydrol. 185, 363–378 (1996).

    Article 
    ADS 

    Google Scholar 

  • Niinemets, Ü. A review of light interception in plant stands from leaf to canopy in different plant functional types and in species with varying shade tolerance. Ecol. Res. 25, 693–714 (2010).

    Article 

    Google Scholar 

  • Gordon, D. A. R., Coenders-Gerrits, M., Sellers, B. A., Sadeghi, S., & Van Stan II, J. T. Rainfall interception and redistribution by a common North American understory and pasture forb, Eupatorium capillifolium (Lam. dogfennel). Hydrol. Earth Syst. Sci. 24, 4587–4599 (2020).

    Article 
    ADS 

    Google Scholar 

  • Ciruzzi, D. M. & Loheide, S. P. II Monitoring tree sway as an indicator of interception dynamics before, during, and following a storm. Geophys. Res. Lett. 48, e2021GL094980 (2021).

    Article 
    ADS 

    Google Scholar 

  • Karimi, P., Bastiaanssen, W. G. & Molden, D. Water Accounting Plus (WA+)–a water accounting procedure for complex river basins based on satellite measurements. Hydrol. Earth Syst. Sci. 17, 2459–2472 (2013).

    Article 
    ADS 

    Google Scholar 

  • del Campo, A. D., González-Sanchis, M., Lidón, A., Ceacero, C. J. & García-Prats, A. Rainfall partitioning after thinning in two low-biomass semiarid forests: Impact of meteorological variables and forest structure on the effectiveness of water-oriented treatments. J. Hydrol. 565, 74–86 (2018).

    Article 

    Google Scholar 

  • Lian, X. et al. Multifaceted characteristics of dryland aridity changes in a warming world. Nat. Rev. Earth Environ. 2, 232–250 (2021).

    Article 
    ADS 

    Google Scholar 

  • Piao, S. et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 1, 14–27 (2020).

    Article 
    ADS 

    Google Scholar 

  • Feng, X. et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Change 6, 1019–1022 (2016).

    Article 
    ADS 

    Google Scholar 

  • Dawson, T. E. & Goldsmith, G. R. The value of wet leaves. N. Phytol. 219, 1156–1169 (2018).

    Article 

    Google Scholar 

  • Aparecido, L. M. T., Miller, G. R., Cahill, A. T. & Moore, G. W. Comparison of tree transpiration under wet and dry canopy conditions in a Costa Rican premontane tropical forest. Hydrol. Process. 30, 5000–5011 (2016).

    Article 
    ADS 

    Google Scholar 

  • Huang, L. & Zhang, Z. Effect of rainfall pulses on plant growth and transpiration of two xerophytic shrubs in a revegetated desert area: Tengger Desert, China. CATENA 137, 269–276 (2016).

    Article 

    Google Scholar 

  • Fathizadeh, O., Hosseini, S., Zimmermann, A., Keim, R. & Boloorani, A. D. Estimating linkages between forest structural variables and rainfall interception parameters in semi-arid deciduous oak forest stands. Sci. Total Environ. 601, 1824–1837 (2017).

    Article 
    ADS 

    Google Scholar 

  • Zhang, Z.-S., Zhao, Y., Li, X.-R., Huang, L. & Tan, H.-J. Gross rainfall amount and maximum rainfall intensity in 60-minute influence on interception loss of shrubs: a 10-year observation in the Tengger Desert. Sci. Rep. 6, 26030 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • de Groen, M. M. & Savenije, H. H. G. A monthly interception equation based on the statistical characteristics of daily rainfall. Water Resour. Res. 42, W12417 (2006).

    Article 
    ADS 

    Google Scholar 

  • Chinita, M. J., Richardson, M., Teixeira, J. & Miranda, P. M. A. Global mean frequency increases of daily and sub-daily heavy precipitation in ERA5. Environ. Res. Lett. 16, 074035 (2021).

    Article 
    ADS 

    Google Scholar 

  • Donat, M. G., Lowry, A. L., Alexander, L. V., O’Gorman, P. A. & Maher, N. More extreme precipitation in the world’s dry and wet regions. Nat. Clim. Change 6, 508–513 (2016).

    Article 
    ADS 

    Google Scholar 

  • IPCC. The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al) (Cambridge Univ. Press, 2021).

  • Ficklin, D. L., Null, S. E., Abatzoglou, J. T., Novick, K. A. & Myers, D. T. Hydrological intensification will increase the complexity of water resource management. Earth’s Futur. 10, e2021EF002487 (2022).

    Article 
    ADS 

    Google Scholar 

  • Haslwanter, A., Hammerle, A. & Wohlfahrt, G. Open-path vs. closed-path eddy covariance measurements of the net ecosystem carbon dioxide and water vapour exchange: a long-term perspective. Agric. For. Meteorol. 149, 291–302 (2009).

    Article 
    ADS 

    Google Scholar 

  • Migliavacca, M. et al. The three major axes of terrestrial ecosystem function. Nature 598, 468–472 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Zhang, W. et al. The effect of relative humidity on eddy covariance latent heat flux measurements and its implication for partitioning into transpiration and evaporation. Preprint at https://doi.org/10.2139/ssrn.4106267 (2022).

  • van Dijk, A. I. J. M. et al. Rainfall interception and the coupled surface water and energy balance. Agric. For. Meteorol. 214–215, 402–415 (2015).

    Article 

    Google Scholar 

  • Barr, A. G., Morgenstern, K., Black, T. A., McCaughey, J. H. & Nesic, Z. Surface energy balance closure by the eddy-covariance method above three boreal forest stands and implications for the measurement of the CO2 flux. Agric. Meteorol. 140, 322–337 (2006).

    Article 

    Google Scholar 

  • Reichstein, M. et al. Deep learning and process understanding for data-driven Earth system science. Nature 566, 195–204 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Zhi, W. et al. From hydrometeorology to river water quality: can a deep learning model predict dissolved oxygen at the continental scale? Environ. Sci. Technol. 55, 2357–2368 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kraft, B., Jung, M., Körner, M. & Reichstein, M. Hybrid modeling: fusion of a deep approach and physics-based model for global hydrological modeling. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 43, 1537–1544 (2020).

    Article 

    Google Scholar 

  • Hoffmann, L. et al. From ERA-Interim to ERA5: the considerable impact of ECMWF’s next-generation reanalysis on Lagrangian transport simulations. Atmos. Chem. Phys. 19, 3097–3124 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Wang, D., Wang, G. & Anagnostou, E. N. Evaluation of canopy interception schemes in land surface models. J. Hydrol. 347, 308–318 (2007).

    Article 
    ADS 

    Google Scholar 

  • Wang, G. & Eltahir, E. A. Modeling the biosphere–atmosphere system: The impact of the subgrid variability in rainfall interception. J. Clim. 13, 2887–2899 (2000).

    <a data-track="click" rel="nofollow noopener" data-track-label="10.1175/1520-0442(2000)0132.0.CO;2″ data-track-action=”article reference” href=”https://doi.org/10.1175%2F1520-0442%282000%29013%3C2887%3AMTBAST%3E2.0.CO%3B2″ aria-label=”Article reference 59″ data-doi=”10.1175/1520-0442(2000)0132.0.CO;2″>Article 
    ADS 

    Google Scholar 

  • Sitch, S. et al. Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences 12, 653–679 (2015).

    Article 
    ADS 

    Google Scholar 

  • Le Quéré, C. et al. Global carbon budget 2018. Earth Syst. Sci. Data 10, 2141–2194 (2018).

    Article 
    ADS 

    Google Scholar 


  • Source: Ecology - nature.com

    New nanosatellite tests autonomy in space

    Different roles of concurring climate and regional land-use changes in past 40 years’ insect trends