Goodale, E., Beauchamp, G. & Ruxton, G. D. Mixed-Species Groups of Animals: Behavior, Community Structure, and Conservation (Academic Press, 2017).
Krause, J. & Ruxton, G. D. Living in Groups (Oxford University Press, 2002).
Stensland, E., Angerbjorn, A. & Berggren, P. Mixed species groups in mammals. Mamm. Rev. 33, 205–223 (2003).
Anderson, T. M. et al. Landscape-scale analyses suggest both nutrient and antipredator advantages to Serengeti herbivore hotspots. Ecology 91, 1519–1529 (2010).
Google Scholar
Sinclair, A. R. E. Does interspecific competition or predation shape the African ungulate community? J. Anim. Ecol. 54, 899–918 (1985).
Kiffner, C., Kioko, J., Leweri, C. & Krause, S. Seasonal patterns of mixed species groups in large East African mammals. PLoS ONE 9, e113446 (2014).
Google Scholar
Meise, K., Franks, D. W. & Bro-Jørgensen, J. Using social network analysis of mixed species groups in African savannah herbivores to assess how community structure responds to environmental change. Philos. Trans. R. Soc. B Biol. Sci. 374, 20190009 (2019).
de Boer, W. F. & Prins, H. H. T. Large herbivores that thrive mightily but eat and drink as friends. Oecologia 82, 264–274 (1990).
Google Scholar
Beaudrot, L., Palmer, M. S., Anderson, T. M. & Packer, C. Mixed-species groups of Serengeti grazers: A test of the stress gradient hypothesis. Ecology. https://doi.org/10.1002/ecy.3163 (2020).
Google Scholar
He, Q., Bertness, M. D. & Altieri, A. H. Global shifts towards positive species interactions with increasing environmental stress. Ecol. Lett. 16, 695–706 (2013).
Google Scholar
Bertness, M. D. & Callaway, R. Positive interactions in communities. Trends Ecol. Evol. 9, 191–193 (1994).
Google Scholar
Fugère, V. et al. Testing the stress-gradient hypothesis with aquatic detritivorous invertebrates: Insights for biodiversity-ecosystem functioning research. J. Anim. Ecol. 81, 1259–1267 (2012).
Google Scholar
Bakker, E. S., Dobrescu, I., Straile, D. & Holmgren, M. Testing the stress gradient hypothesis in herbivore communities: Facilitation peaks at intermediate nutrient levels. Ecology 94, 1776–1784 (2013).
Google Scholar
Hopcraft, J. G. C., Olff, H. & Sinclair, A. R. E. Herbivores, resources and risks: Alternating regulation along primary environmental gradients in savannas. Trends Ecol. Evol. 25, 119–128 (2010).
Google Scholar
Sih, A. Optimal behavior: Can foragers balance two conflicting demands? Science 210, 1041–1043 (1980).
Google Scholar
Creel, S. & Christianson, D. Relationships between direct predation and risk effects. Trends Ecol. Evol. 23, 194–201 (2008).
Google Scholar
Zollner, P. A. & Lima, S. L. Towards a behavioral ecology of ecological landscapes. Trends Ecol. Evol. 11, 131–135 (1996).
Google Scholar
Brown, J. S., Laundré, J. W. & Gurung, M. The ecology of fear: Optimal foraging, game theory, and trophic interactions. J. Mammal. 80, 385–399 (1999).
Gaynor, K. M., Brown, J. S., Middleton, A. D., Power, M. E. & Brashares, J. S. Landscapes of fear: Spatial patterns of risk perception and response. Trends Ecol. Evol. 34, 355–368 (2019).
Google Scholar
Creel, S., Schuette, P. & Christianson, D. Effects of predation risk on group size, vigilance, and foraging behavior in an African ungulate community. Behav. Ecol. 25, 773–784 (2014).
Goodale, E., Beauchamp, G., Magrath, R. D., Nieh, J. C. & Ruxton, G. D. Interspecific information transfer influences animal community structure. Trends Ecol. Evol. 25, 354–361 (2010).
Google Scholar
Freeberg, T. M., Eppert, S. K., Sieving, K. E. & Lucas, J. R. Diversity in mixed species groups improves success in a novel feeder test in a wild songbird community. Sci. Rep. 7, 43014 (2017).
Google Scholar
Anderson, T. M. et al. The spatial distribution of african savannah herbivores: Species associations and habitat occupancy in a landscape context. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150314 (2016).
Arsenault, R. & Owen-Smith, N. Resource partitioning by grass height among grazing ungulates does not follow body size relation. Oikos 117, 1711–1717 (2008).
Esmaeili, S. et al. Body size and digestive system shape resource selection by ungulates: A cross-taxa test of the forage maturation hypothesis. Ecol. Lett. 24, 2178–2191 (2021).
Google Scholar
Hopcraft, J. G. C., Anderson, T. M., Pérez-Vila, S., Mayemba, E. & Olff, H. Body size and the division of niche space: Food and predation differentially shape the distribution of Serengeti grazers. J. Anim. Ecol. 81, 201–213 (2012).
Google Scholar
McArthur, C., Banks, P. B., Boonstra, R. & Forbey, J. S. The dilemma of foraging herbivores: Dealing with food and fear. Oecologia 176, 677–689 (2014).
Google Scholar
Gagnon, M. & Chew, A. E. Dietary preferences in extant African Bovidae. J. Mammal. 81, 490–511 (2000).
Kartzinel, T. R. et al. DNA metabarcoding illuminates dietary niche partitioning by African large herbivores. Proc. Natl. Acad. Sci. U.S.A. 112, 8019–8024 (2015).
Google Scholar
Veldhuis, M. P. et al. Cross-boundary human impacts compromise the Serengeti-Mara ecosystem. Science 363, 1424–1428 (2019).
Google Scholar
Kavwele, C. M. et al. Non-local effects of human activity on the spatial distribution of migratory wildlife in Serengeti National Park, Tanzania. Ecol. Solut. Evid. 3, e12159 (2022).
Bijlsma, R. & Loeschcke, V. Environmental stress, adaptation and evolution: An overview. J. Evol. Biol. 18, 744–749 (2005).
Google Scholar
Schmitt, M. H., Stears, K. & Shrader, A. M. Zebra reduce predation risk in mixed-species herds by eavesdropping on cues from giraffe. Behav. Ecol. 27, 1073–1077 (2016).
Preisser, E. L., Orrock, J. L. & Schmitz, O. J. Predator hunting mode and habitat domain alter nonconsmuptive effects in predator-prey interactions. Ecology 88, 2744–2751 (2007).
Google Scholar
Kiffner, C. et al. Long-term persistence of wildlife populations in a pastoral area. Ecol. Evol. 10, 10000–10016 (2020).
Google Scholar
Hopcraft, J. G. C. et al. Competition, predation, and migration: Individual choice patterns of Serengeti migrants captured by hierarchical models. Ecol. Monogr. 84, 355–372 (2014).
Fryxell, J. M. Forage quality and aggregation by large herbivores. Am. Nat. 138, 478–498 (1991).
Fitzgibbon, C. D. Mixed-species grouping in Thomson’s and Grant’s gazelles: The antipredator benefits. Anim. Behav. 39, 1116–1126 (1990).
Brown, J. S. & Kotler, B. P. Hazardous duty pay and the foraging cost of predation. Ecol. Lett. 7, 999–1014 (2004).
Stears, K. & Shrader, A. M. Increases in food availability can tempt oribi antelope into taking greater risks at both large and small spatial scales. Anim. Behav. 108, 155–164 (2015).
Creel, S. Toward a predictive theory of risk effects: Hypotheses for prey attributes and compensatory mortality. Ecology 92, 2190–2195 (2011).
Google Scholar
Périquet, S. et al. Effects of lions on behaviour and endocrine stress in plains zebras. Ethology 123, 667 (2017).
Stears, K., Schmitt, M. H., Wilmers, C. C. & Shrader, A. M. Mixed-species herding levels the landscape of fear. Proc. R. Soc. B Biol. Sci. 287, 20192555 (2020).
Schmitt, M. H., Stears, K., Wilmers, C. C. & Shrader, A. M. Determining the relative importance of dilution and detection for zebra foraging in mixed-species herds. Anim. Behav. 96, 151–158 (2014).
Meise, K., Franks, D. W. & Bro-Jørgensen, J. Alarm communication networks as a driver of community structure in African savannah herbivores. Ecol. Lett. 23, 293–304 (2020).
Google Scholar
Codron, D., Hofmann, R. R. & Clauss, M. Morphological and physiological adaptations for browsing and grazing. In The Ecology of Browsing and Grazing II (eds Gordon, I. J. & Prins, H. H. T.) 81–125 (Springer, 2019).
Odadi, W. O., Karachi, M. K., Abdulrazak, S. A. & Young, T. P. African wild ungulates compete with or facilitate cattle depending on season. Science 333, 1753–1755 (2011).
Google Scholar
Maestre, F. T., Callaway, R. M., Valladares, F. & Lortie, C. J. Refining the stress-gradient hypothesis for competition and facilitation in plant communities. J. Ecol. 97, 199–205 (2009).
de Jonge, M. M. J. et al. Conditional love? Co-occurrence patterns of drought-sensitive species in European grasslands are consistent with the stress-gradient hypothesis. Glob. Ecol. Biogeogr. 30, 1609–1620 (2021).
Google Scholar
Franks, D. W., Weiss, M. N., Silk, M. J., Perryman, R. J. Y. & Croft, D. P. Calculating effect sizes in animal social network analysis. Methods Ecol. Evol. 12, 33–41 (2021).
Estes, J. A. et al. Trophic downgrading of planet earth. Science 333, 301–306 (2011).
Google Scholar
Meise, K., Franks, D. W. & Bro-Jørgensen, J. Multiple adaptive and non-adaptive processes determine responsiveness to heterospecific alarm calls in African savannah herbivores. Proc. R. Soc. B Biol. Sci. 285, 20172676 (2018).
Blumstein, D. T., Bitton, A. & DaVeiga, J. How does the presence of predators influence the persistence of antipredator behavior? J. Theor. Biol. 239, 460–468 (2006).
Google Scholar
Riggio, J. et al. Lion populations may be declining in Africa but not as Bauer et al. suggest. Proc. Natl. Acad. Sci. 113, 201521506 (2015).
Bauer, H. et al. Lion (Panthera leo) populations are declining rapidly across Africa, except in intensively managed areas. Proc. Natl. Acad. Sci. 112, 14894–14899 (2015).
Google Scholar
Pettorelli, N., Bro-Jørgensen, J., Durant, S. M., Blackburn, T. & Carbone, C. Energy availability and density estimates in African ungulates. Am. Nat. 173, 698–704 (2009).
Google Scholar
Haile, G. G. et al. Projected impacts of climate change on drought patterns over East Africa. Earth’s Future 8, 1–23 (2020).
Devine, A. P., McDonald, R. A., Quaife, T. & Maclean, I. M. D. Determinants of woody encroachment and cover in African savannas. Oecologia 183, 939–951 (2017).
Google Scholar
Kiffner, C. et al. Long-term population dynamics in a multi-species assemblage of large herbivores in East Africa. Ecosphere 8, e02027 (2017).
Prins, H. H. T. & Loth, P. E. Rainfall patterns as background to plant phenology in northern Tanzania. J. Biogeogr. 15, 451–463 (1988).
Beattie, K., Olson, E. R., Kissui, B., Kirschbaum, A. & Kiffner, C. Predicting livestock depredation risk by African lions (Panthera leo) in a multi-use area of northern Tanzania. Eur. J. Wildl. Res. 66, 11 (2020).
Kasozi, H. & Montgomery, R. A. Variability in the estimation of ungulate group sizes complicates ecological inference. Ecol. Evol. 10, 6881–6889 (2020).
Google Scholar
USGS. MOD13Q1 v006 MODIS/Terra Vegetation Indices 16-Day L3 Global 250 m SIN Grid. 10.5067/MODIS/MOD13Q1.006 (2020).
R Core Team. R: A Language and Environment for Statistical Computing. http://www.r-project.org/. Accessed January 02, 2022 (2021).
Dice, L. R. Measures of the amount of ecologic association between species. Ecology 26, 297–302 (1945).
Croft, D. P., James, R. & Krause, J. Exploring Animal Social Networks (Princeton University Press, 2008).
Besag, J. & Clifford, P. Generalized Monte Carlo significance tests. Biometrika 76, 633–642 (1989).
Google Scholar
Hayward, M. W. & Kerley, G. I. H. Prey preferences of the lion (Panthera leo). J. Zool. 267, 309–322 (2005).
Codron, D. et al. Diets of savanna ungulates from stable carbon isotope composition of faeces. J. Zool. 273, 21–29 (2007).
Kartzinel, T. R. & Pringle, R. M. Multiple dimensions of dietary diversity in large mammalian herbivores. J. Anim. Ecol. 89, 1482–1496 (2020).
Google Scholar
Prins, H. H. T. & Douglas-Hamilton, I. Stability in a multi-species assemblage of large herbivores in East Africa. Oecologia 83, 392–400 (1990).
Google Scholar
Tournier, E. et al. Differences in diet between six neighbouring groups of vervet monkeys. Ethology 120, 471–482 (2014).
Humphries, B. D., Ramesh, T. & Downs, C. T. Diet of black-backed jackals (Canis mesomelas) on farmlands in the KwaZulu-Natal Midlands, South Africa. Mammalia 80, 405–412 (2016).
Source: Ecology - nature.com