in

Reply to: Assessing the efficiency of Verily’s automated process for production and release of male Wolbachia-infected mosquitoes

  • Crawford, J. E. et al. Efficient production of male Wolbachia-infected Aedes aegypti mosquitoes enables large-scale suppression of wild populations. Nat. Biotechnol. 38, 482–492 (2020).

    CAS 
    Article 

    Google Scholar 

  • Xi, Z., Khoo, C. C. H. & Dobson, S. L. Wolbachia establishment and invasion in an Aedes aegypti laboratory population. Science 310, 326–328 (2005).

    CAS 
    Article 

    Google Scholar 

  • Phuc, H. K. et al. Late-acting dominant lethal genetic systems and mosquito control. BMC Biol. 5, 11 (2007).

    Article 

    Google Scholar 

  • Kandul, N. P. et al. Transforming insect population control with precision guided sterile males with demonstration in flies. Nat. Commun. 10, 84 (2019).

    CAS 
    Article 

    Google Scholar 

  • Kyrou, K. et al. A CRISPR–Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes. Nat. Biotechnol. 36, 1062–1066 (2018).

    CAS 
    Article 

    Google Scholar 

  • Kittayapong, P. et al. Combined sterile insect technique and incompatible insect technique: the first proof-of-concept to suppress Aedes aegypti vector populations in semi-rural settings in Thailand. PLoS Negl. Trop. Dis. 13, e0007771 (2019).

    Article 

    Google Scholar 

  • Zheng, X. et al. Incompatible and sterile insect techniques combined eliminate mosquitoes. Nature 572, 56–61 (2019).

    CAS 
    Article 

    Google Scholar 

  • Ryan, P. A. et al. Establishment of wMel Wolbachia in Aedes aegypti mosquitoes and reduction of local dengue transmission in Cairns and surrounding locations in northern Queensland, Australia. Gates Open Res. 3, 1547 (2019).

    Article 

    Google Scholar 

  • Indriani, C. et al. Reduced dengue incidence following deployments of Wolbachia-infected Aedes aegypti in Yogyakarta, Indonesia: a quasi-experimental trial using controlled interrupted time series analysis. Gates Open Res. 4, 50 (2020).

  • Velez, I. D. et al. The impact of city-wide deployment of Wolbachia-carrying mosquitoes on arboviral disease incidence in Medellín and Bello, Colombia: study protocol for an interrupted time-series analysis and a test-negative design study. F1000Res. 8, 1327 (2020).

    Article 

    Google Scholar 

  • Durovni, B. et al. The impact of large-scale deployment of Wolbachia mosquitoes on dengue and other Aedes-borne diseases in Rio de Janeiro and Niterói, Brazil: study protocol for a controlled interrupted time series analysis using routine disease surveillance data. F1000Res. 8, 1328 (2020).

    Article 

    Google Scholar 

  • O’Connor, L. et al. Open release of male mosquitoes infected with a Wolbachia biopesticide: field performance and infection containment. PLoS Negl. Trop. Dis. 6, e1797 (2012).

    Article 

    Google Scholar 

  • Nazni, W. A. et al. Establishment of Wolbachia strain wAlbB in Malaysian populations of Aedes aegypti for dengue control. Curr. Biol. 29, 4241–4248 (2019).

    CAS 
    Article 

    Google Scholar 

  • Klassen, W. & Curtis, C. F. In: Sterile Insect Technique (eds Dyck, V. A., Hendrichs, J. & Robinson, A. S.) 3–36 (Springer-Verlag, 2005).

  • Fried, M. Determination of sterile-insect competitiveness. J. Econ. Entomol. 64, 869–872 (1971).

    Article 

    Google Scholar 

  • Bouyer, J. et al. Field performance of sterile male mosquitoes released from an uncrewed aerial vehicle. Sci. Robot. 5, eaba6251 (2020).

    Article 

    Google Scholar 

  • Krafsur, E. S., Whitten, C. J. & Novy, J. E. Screwworm eradication in North and Central America. Parasitol. Today 3, 131–137 (1987).

    CAS 
    Article 

    Google Scholar 

  • Hendrichs, J., Ortiz, G., Liedo, P. & Schwarz, A. Six years of successful medfly program in Mexico and Guatemala. In: Fruit Flies of Economic Importance (ed Cavalloro, R.) 353–365 (A. A. Balkema, 1983).

  • Helinski, M. E. H., Parker, A. G. & Knols, B. G. J. Radiation-induced sterility for pupal and adult stages of the malaria mosquito Anopheles arabiensis. Malar. J. 5, 41 (2006).

    Article 

    Google Scholar 

  • Helinski, M. E. H., Parker, A. G. & Knols, B. G. J. Radiation biology of mosquitoes. Malar. J. 8 Suppl 2, S6 (2009).

  • Benedict, M. Q. & Robinson, A. S. The first releases of transgenic mosquitoes: an argument for the sterile insect technique. Trends Parasitol. 19, 349–355 (2003).

    Article 

    Google Scholar 

  • Culbert, N. J. et al. Longevity of mass-reared, irradiated and packed male Anopheles arabiensis and Aedes aegypti under simulated environmental field conditions. Parasit. Vectors 11, 603 (2018).

    CAS 
    Article 

    Google Scholar 

  • Culbert, N. J. et al. A rapid quality control test to foster the development of genetic control in mosquitoes. Sci. Rep. 8, 16179 (2018).

    Article 

    Google Scholar 

  • Bentley, D. R. et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456, 53–59 (2008).

    CAS 
    Article 

    Google Scholar 

  • Carlson, R. The pace and proliferation of biological technologies. Biosecur. Bioterror. 1, 203–214 (2003).

    Article 

    Google Scholar 

  • The Wolbachia Project–Singapore Consortium & Ching, N. L. Wolbachia-mediated sterility suppresses Aedes aegypti populations in the urban tropics. Preprint at https://www.medrxiv.org/content/10.1101/2021.06.16.21257922v1 (2021).

  • Soh, S. et al. Economic impact of dengue in Singapore from 2010 to 2020 and the cost-effectiveness of Wolbachia interventions. PLoS Global Public Health https://doi.org/10.1371/journal.pgph.0000024 (2021).


  • Source: Ecology - nature.com

    Lama Willa Baker challenges MIT audience to look beyond technology to solve the climate crises

    Whales from space dataset, an annotated satellite image dataset of whales for training machine learning models