in

Response of N2O emission and denitrification genes to different inorganic and organic amendments

  • IPCC. Climate change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2013).

    Google Scholar 

  • Pachauri, R. K. et al. Climate change 2014: Synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change (IPCC, 2014).

    Google Scholar 

  • Reay, D. S. et al. Global agriculture and nitrous oxide emissions. Nat. Clim. Change 2, 410–416 (2012).

    ADS 
    CAS 

    Google Scholar 

  • Jassal, R. S., Black, T. A., Roy, R. & Ethier, G. Effect of nitrogen fertilization on soil CH4 and N2O fluxes, and soil and bole respiration. Geoderma 162, 182–186 (2011).

    ADS 
    CAS 

    Google Scholar 

  • Hu, H. W., Chen, D. & He, J. Z. Microbial regulation of terrestrial nitrous oxide formation: Understanding the biological pathways for prediction of emission rates. FEMS Microbiol. Rev. 39, 729–749 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Bateman, E. J. & Baggs, E. M. Contributions of nitrification and denitrification to N2O emissions from soils at different water-filled pore space. Biol. Fertil. Soils 41, 379–388 (2005).

    CAS 

    Google Scholar 

  • Yang, Y. D., Hu, Y. G., Wang, Z. M. & Zeng, Z. H. Variations of the nirS-, nirK-, and nosZ-denitrifying bacterial communities in a northern Chinese soil as affected by different long-term irrigation regimes. Environ. Sci. Pollut. Res. 25, 14057–14067 (2018).

    CAS 

    Google Scholar 

  • Pan, Y., Ye, L., Ni, B. & Yuan, Z. Effect of pH on N2O reduction and accumulation during denitrification by methanol utilizing denitrifiers. Water Res. 46, 4832–4840 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Hallin, S., Philippot, L., Loffler, F. E., Sanford, R. A. & Jones, C. M. Genomics and ecology of novel N2O-reducing microorganisms. Trends Microbiol. 1485, 43–55 (2017).

    Google Scholar 

  • Yang, L., Zhang, X. & Ju, X. Linkage between N2O emission and functional gene abundance in an intensively managed calcareous fluvo-aquic soil. Sci. Rep. 7, 43283 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cui, P. Y. et al. Long-term organic and inorganic fertilization alters temperature sensitivity of potential N2O emissions and associated microbes. Soil Biol. Biochem. 93, 131–141 (2016).

    CAS 

    Google Scholar 

  • Gerber, J. S. et al. Spatially explicit estimates of N2O emissions from croplands suggest climate mitigation opportunities from improved fertilizer management. Glob. Change Biol. 22, 3383–3394 (2016).

    ADS 

    Google Scholar 

  • Shcherbak, I., Millar, N. & Robertson, G. P. Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen. Proc. Natl. Acad. Sci. 111, 9199–9204 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, J., Chadwick, D. R., Cheng, Y. & Yan, X. Global analysis of agricultural soil denitrification in response to fertilizer nitrogen. Sci. Total Environ. 616, 908–917 (2018).

    ADS 
    PubMed 

    Google Scholar 

  • Albanito, F. et al. Direct nitrous oxide emissions from tropical and sub-tropical agricultural systems—A review and modelling of emission factors. Sci. Rep. 7, 44235 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wolsing, M. & Priemé, A. Observation of high seasonal variation in community structure of denitrifying bacteria in arable soil receiving artificial fertilizer and cattle manure by determining T-RFLP of nir gene fragments. FEMS Microbiol. Ecol. 48, 261–271 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • Akiyama, H., McTaggart, I. P., Ball, B. C. & Scott, A. N2O, NO, and NH3 emissions from soil after the application of organic fertilizers, urea and water. Water Air Soil Pollut. 156, 113–129 (2004).

    ADS 
    CAS 

    Google Scholar 

  • Wang, Y. Y. et al. Responses of N2O reductase gene (nosZ)-denitrifer communities to long-term fertilization follow a depth pattern in calcareous purplish paddy soil. J. Integr. Agric. 16, 2597–2611 (2017).

    CAS 

    Google Scholar 

  • Fernandez-Luqueno, F. et al. Emission of CO2 and N2O from soil cultivated with common bean (Phaseolus vulgaris L.) fertilized with different N sources. Sci. Total Environ. 407, 4289–4296 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Yin, C. et al. Different denitrification potential of aquic brown soil in Northeast China under inorganic and organic fertilization accompanied by distinct changes of nirS-and nirK-denitrifying bacterial community. Eur. J. Soil Biol. 65, 47–56 (2014).

    CAS 

    Google Scholar 

  • Harter, J. et al. Linking N2O emissions from biochar-amended soil to the structure and function of the N-cycling microbial community. ISME J. 8, 660–674 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hai, B. et al. Quantification of key genes steering the microbial nitrogen cycle in the rhizosphere of sorghum cultivars in tropical agroecosystems. Appl. Environ. Microbiol. 75, 4993–5000 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang, R. et al. Nitrous oxide emission and the related denitrifier community: A short-term response to organic manure substituting chemical fertilizer. Ecotoxicol. Environ. Saf. 192, 110291 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Xu, X. et al. NosZ clade II rather than clade I determine in situ N2O emissions with different fertilizer types under simulated climate change and its legacy. Soil Biol. Biochem. 150, 107974 (2020).

    CAS 

    Google Scholar 

  • Henderson, S. L. et al. Changes in denitrifier abundance, denitrification gene mRNA levels, nitrous oxide emissions, and denitrification in anoxic soil microcosms amended with glucose and plant residues. Appl. Environ. Microbiol. 76, 2155–2164 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Palmer, K., Biasi, C. & Horn, M. A. Contrasting denitrififier communities relate to contrasting N2O emission patterns from acidic peat soils in arctic tundra. ISME J. 6, 1058–1077 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Dandie, C. E. et al. Abundance, diversity and functional gene expression of denitrifier communities in adjacent riparian and agricultural zones. FEMS Microbiol. Ecol. 77, 69–82 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Avrahami, S., Conrad, R. & Braker, G. Effect of soil ammonium concentration on N2O release and on the community structure of ammonia oxidizers and denitrifiers. Appl. Environ. Microbiol. 68, 5685–5692 (2002).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, Y. J. et al. Compost supplementation with nitrogen loss and greenhouse gas emissions during pig manure composting. Bioresour. Technol. 297, 122435 (2019).

    PubMed 

    Google Scholar 

  • Yang, Y. J. et al. Exploring the microbial mechanisms of organic matter transformation during pig manure composting amended with bean dregs and biochar. Bioresour. Technol. 313, 123647 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Yang, J. H., Wang, C. L. & Dai, H. L. Agricultural Soil Analysis and Environmental Monitoring (China Land Press, 2008) (in Chinese).

    Google Scholar 

  • Wang, Q. R., Li, Y. C. & Klassen, W. Changes of soil microbial biomass carbon and nitrogen with cover crops and irrigation in a tomato field. J. Plant Nutr. 30, 623–639 (2007).

    CAS 

    Google Scholar 

  • Moore, J. M., Klose, S. & Tabatabai, M. A. Soil microbial biomass carbon and nitrogen as affected by cropping systems. Biol. Fertil. Soils 31, 200–210 (2000).

    CAS 

    Google Scholar 

  • Jones, D. L. & Willett, V. B. Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil. Soil Biol. Biochem. 38, 991–999 (2006).

    CAS 

    Google Scholar 

  • Ghani, A., Dexter, M. & Perrott, K. W. Hot-water extractable carbon in soils: A sensitive measurement for determining impacts of fertilization, grazing and cultivation. Soil Biol. Biochem. 35, 1231–1243 (2003).

    CAS 

    Google Scholar 

  • Huang, R. et al. Variation in N2O emission and N2O related microbial functional genes in straw- and biochar-amended and non-amended soils. Appl. Soil. Ecol. 137, 57–68 (2019).

    Google Scholar 

  • Yang, Y. J. et al. Soil organic carbon transformation and dynamics of microorganisms under different organic amendments. Sci. Total Environ. 750, 141719 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • López-Fernández, S. et al. Effects of fertiliser type and the presence or absence of plants on nitrous oxide emissions from irrigated soils. Nutr. Cycl. Agroecosyst. 78, 279–289 (2007).

    Google Scholar 

  • Wallenstein, M. D., Myrold, D. D., Firestone, M. & Voytek, M. Environmental controls on denitrifying communities and denitrification rates: insights from molecular methods. Ecol. Appl. 16, 2143–2152 (2006).

    PubMed 

    Google Scholar 

  • Ciarlo, E., Conti, M., Bartoloni, N. & Rubio, G. Soil N2O emissions and N2O/(N2O+N2) ratio as affected by different fertilization practices and soil moisture. Biol. Fertil. Soils 44, 991–995 (2008).

    CAS 

    Google Scholar 

  • Dandie, C. E. et al. Changes in bacterial denitrifier community abundance over time in an agricultural field and their relationship with denitrification activity. Appl. Environ. Microbiol. 74, 5997–6005 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Francis, C. A., O’Mullan, G. D., Cornwell, J. C. & Ward, B. B. Transitions in nirS-type denitrifier diversity, community composition, and biogeochemical activity along the Chesapeake Bay estuary. Front. Microbiol. 4, 237 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lin, W. et al. Evaluation of N2O sources after fertilizers application in vegetable soil by dual isotopocule plots approach. Environ. Res. 188, 109818 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Chen, M. M. et al. Nitrosospira cluster 3 lineage of AOB and nirK of Rhizobiales respectively dominated N2O emissions from nitrification and denitrification in organic and chemical N fertilizer treated soils. Ecol. Indic. 127, 107722 (2021).

    CAS 

    Google Scholar 

  • Malghani, S., Kim, J., Lee, S. H., Yoo, G. Y. & Kang, H. Application of two contrasting rice-residue-based biochars triggered gaseous loss of nitrogen under denitrification-favoring conditions: a short-term study based on acetylene inhibition technique. Appl. Soil Ecol. 127, 112–119 (2018).

    Google Scholar 

  • Sun, R., Guo, X., Wang, D. & Chu, H. Effects of long-term application of chemical and organic fertilizers on the abundance of microbial communities involved in the nitrogen cycle. Appl. Soil. Ecol. 95, 171–178 (2015).

    Google Scholar 

  • Philippot, L., Andert, J., Jones, C. M., Bru, D. & Hallin, S. Importance of denitrifiers lacking the genes encoding the nitrous oxide reductase for N2O emissions from soil. Glob. Change Biol. 17, 1497–1504 (2011).

    ADS 

    Google Scholar 

  • Chen, Z. et al. Differentiated response of denitrifying communities to fertilization regime in paddy soil. Microb. Ecol. 63, 446–459 (2012).

    PubMed 

    Google Scholar 

  • Yoshida, M., Ishii, S., Otsuka, S. & Senoo, K. nirK-harboring denitrifiers are more responsive to denitrification-inducing conditions in rice paddy soil than nirS-harboring bacteria. Microbes Environ. 25, 45–48 (2010).

    PubMed 

    Google Scholar 

  • Yin, C. et al. Denitrification potential under different fertilization regimes is closely coupled with changes in the denitrifying community in a black soil. Appl. Microbiol. Biotechnol. 99, 5719–5729 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Barrett, M. et al. Carbon amendment and soil depth affect the distribution and abundance of denitrifiers in agricultural soils. Environ. Sci. Pollut. Res. 23, 7899–7910 (2016).

    CAS 

    Google Scholar 

  • Yoshida, M., Ishii, S., Otsuka, S. & Senoo, K. Temporal shifts in diversity and quantity of nirS and nirK in a rice paddy field soil. Soil Biol. Biochem. 41, 2044–2051 (2009).

    CAS 

    Google Scholar 

  • Kandeler, E., Deiglmayr, K., Tscherko, D., Bru, D. & Philippot, L. Abundance of narG, nirS, nirK, and nosZ genes of denitrifying bacteria during primary successions of a glacier foreland. Appl. Environ. Microbiol. 72, 5957–5962 (2006).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    Using soap to remove micropollutants from water

    Study: Ice flow is more sensitive to stress than previously thought