Aune, J. B. & Lal, R. Agricultural productivity in the tropics and critical limits of properties of Oxisols, Ultisols, Alfisols. Trop. Agric. (Trinidad and Tobago) 74, 96–103 (1997).
Bauer, A. & Black, A. L. Quantification of the effect of soil organic matter content on soil productivity. Soil Sci. Soc. Am. J. 58, 185–193 (1994).
Google Scholar
Hamamoto, T., Chirwa, M., Nyambe, I. & Uchida, Y. Small-scale variability in the soil microbial community structure in a semideveloped farm in Zambia. Appl. Environ. Soil Sci. 2018, 1–6 (2018).
Google Scholar
Mapanda, F., Wuta, M., Nyamangara, J. & Rees, R. M. Effects of organic and mineral fertilizer nitrogen on greenhouse gas emissions and plant-captured carbon under maize cropping in Zimbabwe. Plant Soil 343, 67–81 (2011).
Google Scholar
Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 304, 1623–1627 (2004).
Google Scholar
Swanepoel, C. M., van der Laan, M., Weepener, H. L., du Preez, C. C. & Annandale, J. G. Review and meta-analysis of organic matter in cultivated soils in southern Africa. Nutr. Cycl. Agroecosyst. 104, 107–123 (2016).
Google Scholar
Zingore, S., Manyame, C., Nyamugafata, P. & Giller, K. E. Long-term changes in organic matter of woodland soils cleared for arable cropping in Zimbabwe. Eur. J. Soil Sci. 56, 727–736 (2005).
Google Scholar
Sakala, W. D., Cadisch, G. & Giller, K. E. Interactions between residues of maize and pigeonpea and mineral N fertilizers during decomposition and N mineralization. Soil Biol. Biochem. 32, 679–688 (2000).
Google Scholar
Lal, R. & Stewart, B. A. (eds) Food security and soil quality (CRC Press, 2010).
Aparna, K., Pasha, M. A., Rao, D. L. N. & Krishnaraj, P. U. Organic amendments as ecosystem engineers: microbial, biochemical and genomic evidence of soil health improvement in a tropical arid zone field site. Ecol. Eng. 71, 268–277 (2014).
Google Scholar
Dhull, S., Goyal, S., Kapoor, K. & Mundra, M. Microbial biomass carbon and microbial activities of soils receiving chemical fertilizers and organic amendments. Arch. Agron. Soil Sci. 50, 641–647 (2004).
Google Scholar
Zhong, W. et al. The effects of mineral fertilizer and organic manure on soil microbial community and diversity. Plant Soil 326, 511–522 (2010).
Google Scholar
Janssen, B. H. Simple models and concepts as tools for the study of sustained soil productivity in long-term experiments. I. New soil organic matter and residual effect of P from fertilizers and farmyard manure in Kabete, Kenya. Plant Soil 339, 3–16 (2011).
Google Scholar
Ge, G. et al. Soil biological activity and their seasonal variations in response to long-term application of organic and inorganic fertilizers. Plant Soil 326, 31 (2010).
Google Scholar
Crowther, T. W. et al. The global soil community and its influence on biogeochemistry. Science 365, 6455 (2019).
Google Scholar
Grunwald, D., Kaiser, M. & Ludwig, B. Effect of biochar and organic fertilizers on C mineralization and macro-aggregate dynamics under different incubation temperatures. Soil Tillage Res. 164, 11–17 (2016).
Google Scholar
Schleuss, P.-M. et al. Stoichiometric controls of soil carbon and nitrogen cycling after long-term nitrogen and phosphorus addition in a mesic grassland in South Africa. Soil Biol. Biochem. 135, 294–303 (2019).
Google Scholar
de Vries, F. T., Hoffland, E., van Eekeren, N., Brussaard, L. & Bloem, J. Fungal/bacterial ratios in grasslands with contrasting nitrogen management. Soil Biol. Biochem. 38, 2092–2103 (2006).
Google Scholar
Francioli, D. et al. Mineral vs. organic amendments: microbial community structure, activity and abundance of agriculturally relevant microbes are driven by long-term fertilization strategies. Front. Microbiol. 7, (2016).
Fan, F. et al. Probing potential microbial coupling of carbon and nitrogen cycling during decomposition of maize residue by 13C-DNA-SIP. Soil Biol. Biochem. 70, 12–21 (2014).
Google Scholar
Guo, Z., Han, J., Li, J., Xu, Y. & Wang, X. Effects of long-term fertilization on soil organic carbon mineralization and microbial community structure. PLoS ONE 14, e0211163 (2019).
Google Scholar
Kihara, J. et al. Soil aggregation and total diversity of bacteria and fungi in various tillage systems of sub-humid and semi-arid Kenya. Appl. Soil Ecol. 58, 12–20 (2012).
Google Scholar
Sugihara, S., Funakawa, S., Kilasara, M. & Kosaki, T. Effects of land management on CO2 flux and soil C stock in two Tanzanian croplands with contrasting soil texture. Soil Biol. Biochem. 46, 1–9 (2012).
Google Scholar
Ouédraogo, E., Brussaard, L. & Stroosnijder, L. Soil fauna and organic amendment interactions affect soil carbon and crop performance in semi-arid West Africa. Biol Fertil Soils 44, 343–351 (2007).
Google Scholar
Ouédraogo, E., Mando, A. & Brussaard, L. Soil macrofaunal-mediated organic resource disappearance in semi-arid West Africa. Appl. Soil Ecol. 27, 259–267 (2004).
Google Scholar
Powlson, D. S., Hirsch, P. R. & Brookes, P. C. The role of soil microorganisms in soil organic matter conservation in the tropics. Nutr. Cycl. Agroecosyst. 61, 41–51 (2001).
Google Scholar
Gentile, R., Vanlauwe, B., Kavoo, A., Chivenge, P. & Six, J. Residue quality and N fertilizer do not influence aggregate stabilization of C and N in two tropical soils with contrasting texture. Nutr. Cycl. Agroecosyst. 88, 121–131 (2010).
Google Scholar
Amato, M. & Ladd, J. N. Decomposition of 14C-labelled glucose and legume material in soils: Properties influencing the accumulation of organic residue C and microbial biomass C. Soil Biol. Biochem. 24, 455–464 (1992).
Google Scholar
Spain, A. V. Influence of environmental conditions and some soil chemical properties on the carbon and nitrogen contents of some tropical Australian rainforest soils. Soil Res. 28, 825–839 (1990).
Google Scholar
Schimel, D. S., Coleman, D. C. & Horton, K. A. Soil organic matter dynamics in paired rangeland and cropland toposequences in North Dakota. Geoderma 36, 201–214 (1985).
Google Scholar
Schimel, D., Stillwell, M. A. & Woodmansee, R. G. Biogeochemistry of C, N, and P in a soil catena of the shortgrass steppe. Ecology 66, 276–282 (1985).
Google Scholar
Macharia, J. M. et al. Soil greenhouse gas fluxes from maize production under different soil fertility management practices in East Africa. J. Geophys. Res. Biogeosci. 125, e2019JG005427 (2020).
Ortiz-Gonzalo, D. et al. Multi-scale measurements show limited soil greenhouse gas emissions in Kenyan smallholder coffee-dairy systems. Sci. Total Environ. 626, 328–339 (2018).
Google Scholar
De la Cruz-Barrón, M. et al. The bacterial community structure and dynamics of carbon and nitrogen when maize (Zea mays L.) and its neutral detergent fibre were added to soil from zimbabwe with contrasting management practices. Microb. Ecol. 73, 135–152 (2017).
Google Scholar
Wood, S. A. et al. Agricultural intensification and the functional capacity of soil microbes on smallholder African farms. J. Appl. Ecol. 52, 744–752 (2015).
Google Scholar
Bardgett, R. D. & van der Putten, W. H. Belowground biodiversity and ecosystem functioning. Nature 515, 505–511 (2014).
Google Scholar
Wagg, C., Dudenhöffer, J.-H., Widmer, F. & van der Heijden, M. G. A. Linking diversity, synchrony and stability in soil microbial communities. Funct. Ecol. 32, 1280–1292 (2018).
Google Scholar
Nannipieri, P. et al. Microbial diversity and soil functions. Eur. J. Soil Sci. 54, 655–670 (2003).
Google Scholar
Liu, B. et al. Microbial metabolic efficiency and community stability in high and low fertility soils following wheat residue addition. Appl. Soil Ecol. 159, 103848 (2021).
Google Scholar
Hamamoto, T., Uchida, Y., von Rein, I. & Mukumbuta, I. Effects of short-term freezing on nitrous oxide emissions and enzyme activities in a grazed pasture soil after bovine-urine application. Sci. Total Environ. 740, 140006 (2020).
Google Scholar
Thomsen, I. K., Schjønning, P., Jensen, B., Kristensen, K. & Christensen, B. T. Turnover of organic matter in differently textured soils: II. Microbial activity as influenced by soil water regimes. Geoderma 89, 199–218 (1999).
Google Scholar
Rughöft, S. et al. Community composition and abundance of bacterial, archaeal and nitrifying populations in savanna soils on contrasting bedrock material in Kruger National Park, South Africa. Front. Microbiol. 7, 1638 (2016).
Xue, L. et al. Long term effects of management practice intensification on soil microbial community structure and co-occurrence network in a non-timber plantation. For. Ecol. Manag. 459, 117805 (2020).
Google Scholar
Naether, A. et al. Environmental factors affect acidobacterial communities below the subgroup level in grassland and forest Soils. Appl. Environ. Microbiol. 78, 7398–7406 (2012).
Google Scholar
Fierer, N. et al. Reconstructing the microbial diversity and function of pre-agricultural tallgrass prairie soils in the United States. Science 342, 621–624 (2013).
Google Scholar
Fierer, N., Allen, A. S., Schimel, J. P. & Holden, P. A. Controls on microbial CO2 production: a comparison of surface and subsurface soil horizons. Glob. Change Biol. 9, 1322–1332 (2003).
Google Scholar
Bergmann, G. T. et al. The under-recognized dominance of Verrucomicrobia in soil bacterial communities. Soil Biol. Biochem. 43, 1450–1455 (2011).
Google Scholar
Moreno-Espíndola, I. P. et al. The bacterial community structure and microbial activity in a traditional organic milpa farming system under different soil moisture conditions. Front. Microbiol. 9, 2737 (2018).
Google Scholar
Steven, B. et al. Resistance, resilience, and recovery of dryland soil bacterial communities across multiple disturbances. Front. Microbiol. 12, (2021).
Elliott, E. T., Anderson, R. V., Coleman, D. C. & Cole, C. V. Habitable pore space and microbial trophic interactions. Oikos 35, 327–335 (1980).
Google Scholar
Bushby, H. V. A. & Marshall, K. C. Water status of rhizobia in relation to their susceptibility to desiccation and to their protection by montmorillonite. Microbiology 99, 19–27 (1977).
Bitton, G., Henis, Y. & Lahav, N. Influence of clay minerals, humic acid and bacterial capsular polysaccharide on the survival of Klebsiella aerogenes exposed to drying and heating in soils. Plant Soil 45, 65–74 (1976).
Google Scholar
Bastida, F. et al. Soil microbial diversity–biomass relationships are driven by soil carbon content across global biomes. ISME J. 15, 1–11 (2021).
Google Scholar
Hernandez, D. J., David, A. S., Menges, E. S., Searcy, C. A. & Afkhami, M. E. Environmental stress destabilizes microbial networks. ISME J. 15, 1–13 (2021).
Google Scholar
Jones, A. et al. (eds) Soil Atlas of Africa (European Commission. Publication Office of the European Union, 2013).
Mehlich, A. Mehlich 3 soil test extractant: a modification of Mehlich 2 extractant. Commun. Soil Sci. Plant Anal. 15, 1409–1416 (1984).
Google Scholar
Hadas, A., Kautsky, L., Goek, M. & Erman Kara, E. Rates of decomposition of plant residues and available nitrogen in soil, related to residue composition through simulation of carbon and nitrogen turnover. Soil Biol. Biochem. 36, 255–266 (2004).
Google Scholar
Sagova-Mareckova, M. et al. Innovative methods for soil DNA purification tested in soils with widely differing characteristics. Appl. Environ. Microbiol. 74, 2902–2907 (2008).
Google Scholar
Miller, D. N., Bryant, J. E., Madsen, E. L. & Ghiorse, W. C. Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples. Appl. Environ. Microbiol. 65, 4715–4724 (1999).
Google Scholar
Schroeder, J., Kammann, L., Helfrich, M., Tebbe, C. C. & Poeplau, C. Impact of common sample pre-treatments on key soil microbial properties. Soil Biol. Biochem. 160, 108321 (2021).
Google Scholar
Wang, F. et al. Air-drying and long time preservation of soil do not significantly impact microbial community composition and structure. Soil Biol. Biochem. 157, 108238 (2021).
Google Scholar
Sirois, S. H. & Buckley, D. H. Factors governing extracellular DNA degradation dynamics in soil. Environ. Microbiol. Rep. 11, 173–184 (2019).
Google Scholar
Carini, P. et al. Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nat. Microbiol. 2, 1–6 (2016).
Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).
Google Scholar
Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).
Google Scholar
Mickan, B. S. et al. Soil disturbance and water stress interact to influence arbuscular mycorrhizal fungi, rhizosphere bacteria and potential for N and C cycling in an agricultural soil. Biol. Fertil. Soils 55, 53–66 (2019).
Google Scholar
Lehman, C. L. & Tilman, D. Biodiversity, stability, and productivity in competitive communities. Am. Nat. 156, 534–552 (2000).
Google Scholar
Source: Ecology - nature.com