in

Responses of CO2 emissions and soil microbial community structures to organic amendment in two contrasting soils in Zambia

  • Aune, J. B. & Lal, R. Agricultural productivity in the tropics and critical limits of properties of Oxisols, Ultisols, Alfisols. Trop. Agric. (Trinidad and Tobago) 74, 96–103 (1997).

    Google Scholar 

  • Bauer, A. & Black, A. L. Quantification of the effect of soil organic matter content on soil productivity. Soil Sci. Soc. Am. J. 58, 185–193 (1994).

    ADS 
    Article 

    Google Scholar 

  • Hamamoto, T., Chirwa, M., Nyambe, I. & Uchida, Y. Small-scale variability in the soil microbial community structure in a semideveloped farm in Zambia. Appl. Environ. Soil Sci. 2018, 1–6 (2018).

    Article 

    Google Scholar 

  • Mapanda, F., Wuta, M., Nyamangara, J. & Rees, R. M. Effects of organic and mineral fertilizer nitrogen on greenhouse gas emissions and plant-captured carbon under maize cropping in Zimbabwe. Plant Soil 343, 67–81 (2011).

    CAS 
    Article 

    Google Scholar 

  • Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 304, 1623–1627 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Swanepoel, C. M., van der Laan, M., Weepener, H. L., du Preez, C. C. & Annandale, J. G. Review and meta-analysis of organic matter in cultivated soils in southern Africa. Nutr. Cycl. Agroecosyst. 104, 107–123 (2016).

    CAS 
    Article 

    Google Scholar 

  • Zingore, S., Manyame, C., Nyamugafata, P. & Giller, K. E. Long-term changes in organic matter of woodland soils cleared for arable cropping in Zimbabwe. Eur. J. Soil Sci. 56, 727–736 (2005).

    CAS 

    Google Scholar 

  • Sakala, W. D., Cadisch, G. & Giller, K. E. Interactions between residues of maize and pigeonpea and mineral N fertilizers during decomposition and N mineralization. Soil Biol. Biochem. 32, 679–688 (2000).

    CAS 
    Article 

    Google Scholar 

  • Lal, R. & Stewart, B. A. (eds) Food security and soil quality (CRC Press, 2010).

    Google Scholar 

  • Aparna, K., Pasha, M. A., Rao, D. L. N. & Krishnaraj, P. U. Organic amendments as ecosystem engineers: microbial, biochemical and genomic evidence of soil health improvement in a tropical arid zone field site. Ecol. Eng. 71, 268–277 (2014).

    Article 

    Google Scholar 

  • Dhull, S., Goyal, S., Kapoor, K. & Mundra, M. Microbial biomass carbon and microbial activities of soils receiving chemical fertilizers and organic amendments. Arch. Agron. Soil Sci. 50, 641–647 (2004).

    CAS 
    Article 

    Google Scholar 

  • Zhong, W. et al. The effects of mineral fertilizer and organic manure on soil microbial community and diversity. Plant Soil 326, 511–522 (2010).

    CAS 
    Article 

    Google Scholar 

  • Janssen, B. H. Simple models and concepts as tools for the study of sustained soil productivity in long-term experiments. I. New soil organic matter and residual effect of P from fertilizers and farmyard manure in Kabete, Kenya. Plant Soil 339, 3–16 (2011).

    CAS 
    Article 

    Google Scholar 

  • Ge, G. et al. Soil biological activity and their seasonal variations in response to long-term application of organic and inorganic fertilizers. Plant Soil 326, 31 (2010).

    CAS 
    Article 

    Google Scholar 

  • Crowther, T. W. et al. The global soil community and its influence on biogeochemistry. Science 365, 6455 (2019).

    Article 

    Google Scholar 

  • Grunwald, D., Kaiser, M. & Ludwig, B. Effect of biochar and organic fertilizers on C mineralization and macro-aggregate dynamics under different incubation temperatures. Soil Tillage Res. 164, 11–17 (2016).

    Article 

    Google Scholar 

  • Schleuss, P.-M. et al. Stoichiometric controls of soil carbon and nitrogen cycling after long-term nitrogen and phosphorus addition in a mesic grassland in South Africa. Soil Biol. Biochem. 135, 294–303 (2019).

    CAS 
    Article 

    Google Scholar 

  • de Vries, F. T., Hoffland, E., van Eekeren, N., Brussaard, L. & Bloem, J. Fungal/bacterial ratios in grasslands with contrasting nitrogen management. Soil Biol. Biochem. 38, 2092–2103 (2006).

    Article 

    Google Scholar 

  • Francioli, D. et al. Mineral vs. organic amendments: microbial community structure, activity and abundance of agriculturally relevant microbes are driven by long-term fertilization strategies. Front. Microbiol. 7, (2016).

  • Fan, F. et al. Probing potential microbial coupling of carbon and nitrogen cycling during decomposition of maize residue by 13C-DNA-SIP. Soil Biol. Biochem. 70, 12–21 (2014).

    CAS 
    Article 

    Google Scholar 

  • Guo, Z., Han, J., Li, J., Xu, Y. & Wang, X. Effects of long-term fertilization on soil organic carbon mineralization and microbial community structure. PLoS ONE 14, e0211163 (2019).

    CAS 
    Article 

    Google Scholar 

  • Kihara, J. et al. Soil aggregation and total diversity of bacteria and fungi in various tillage systems of sub-humid and semi-arid Kenya. Appl. Soil Ecol. 58, 12–20 (2012).

    Article 

    Google Scholar 

  • Sugihara, S., Funakawa, S., Kilasara, M. & Kosaki, T. Effects of land management on CO2 flux and soil C stock in two Tanzanian croplands with contrasting soil texture. Soil Biol. Biochem. 46, 1–9 (2012).

    CAS 
    Article 

    Google Scholar 

  • Ouédraogo, E., Brussaard, L. & Stroosnijder, L. Soil fauna and organic amendment interactions affect soil carbon and crop performance in semi-arid West Africa. Biol Fertil Soils 44, 343–351 (2007).

    Article 

    Google Scholar 

  • Ouédraogo, E., Mando, A. & Brussaard, L. Soil macrofaunal-mediated organic resource disappearance in semi-arid West Africa. Appl. Soil Ecol. 27, 259–267 (2004).

    Article 

    Google Scholar 

  • Powlson, D. S., Hirsch, P. R. & Brookes, P. C. The role of soil microorganisms in soil organic matter conservation in the tropics. Nutr. Cycl. Agroecosyst. 61, 41–51 (2001).

    Article 

    Google Scholar 

  • Gentile, R., Vanlauwe, B., Kavoo, A., Chivenge, P. & Six, J. Residue quality and N fertilizer do not influence aggregate stabilization of C and N in two tropical soils with contrasting texture. Nutr. Cycl. Agroecosyst. 88, 121–131 (2010).

    CAS 
    Article 

    Google Scholar 

  • Amato, M. & Ladd, J. N. Decomposition of 14C-labelled glucose and legume material in soils: Properties influencing the accumulation of organic residue C and microbial biomass C. Soil Biol. Biochem. 24, 455–464 (1992).

    CAS 
    Article 

    Google Scholar 

  • Spain, A. V. Influence of environmental conditions and some soil chemical properties on the carbon and nitrogen contents of some tropical Australian rainforest soils. Soil Res. 28, 825–839 (1990).

    CAS 
    Article 

    Google Scholar 

  • Schimel, D. S., Coleman, D. C. & Horton, K. A. Soil organic matter dynamics in paired rangeland and cropland toposequences in North Dakota. Geoderma 36, 201–214 (1985).

    ADS 
    Article 

    Google Scholar 

  • Schimel, D., Stillwell, M. A. & Woodmansee, R. G. Biogeochemistry of C, N, and P in a soil catena of the shortgrass steppe. Ecology 66, 276–282 (1985).

    CAS 
    Article 

    Google Scholar 

  • Macharia, J. M. et al. Soil greenhouse gas fluxes from maize production under different soil fertility management practices in East Africa. J. Geophys. Res. Biogeosci. 125, e2019JG005427 (2020).

  • Ortiz-Gonzalo, D. et al. Multi-scale measurements show limited soil greenhouse gas emissions in Kenyan smallholder coffee-dairy systems. Sci. Total Environ. 626, 328–339 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • De la Cruz-Barrón, M. et al. The bacterial community structure and dynamics of carbon and nitrogen when maize (Zea mays L.) and its neutral detergent fibre were added to soil from zimbabwe with contrasting management practices. Microb. Ecol. 73, 135–152 (2017).

    Article 

    Google Scholar 

  • Wood, S. A. et al. Agricultural intensification and the functional capacity of soil microbes on smallholder African farms. J. Appl. Ecol. 52, 744–752 (2015).

    CAS 
    Article 

    Google Scholar 

  • Bardgett, R. D. & van der Putten, W. H. Belowground biodiversity and ecosystem functioning. Nature 515, 505–511 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Wagg, C., Dudenhöffer, J.-H., Widmer, F. & van der Heijden, M. G. A. Linking diversity, synchrony and stability in soil microbial communities. Funct. Ecol. 32, 1280–1292 (2018).

    Article 

    Google Scholar 

  • Nannipieri, P. et al. Microbial diversity and soil functions. Eur. J. Soil Sci. 54, 655–670 (2003).

    Article 

    Google Scholar 

  • Liu, B. et al. Microbial metabolic efficiency and community stability in high and low fertility soils following wheat residue addition. Appl. Soil Ecol. 159, 103848 (2021).

    Article 

    Google Scholar 

  • Hamamoto, T., Uchida, Y., von Rein, I. & Mukumbuta, I. Effects of short-term freezing on nitrous oxide emissions and enzyme activities in a grazed pasture soil after bovine-urine application. Sci. Total Environ. 740, 140006 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Thomsen, I. K., Schjønning, P., Jensen, B., Kristensen, K. & Christensen, B. T. Turnover of organic matter in differently textured soils: II. Microbial activity as influenced by soil water regimes. Geoderma 89, 199–218 (1999).

    ADS 
    Article 

    Google Scholar 

  • Rughöft, S. et al. Community composition and abundance of bacterial, archaeal and nitrifying populations in savanna soils on contrasting bedrock material in Kruger National Park, South Africa. Front. Microbiol. 7, 1638 (2016).

    Google Scholar 

  • Xue, L. et al. Long term effects of management practice intensification on soil microbial community structure and co-occurrence network in a non-timber plantation. For. Ecol. Manag. 459, 117805 (2020).

    Article 

    Google Scholar 

  • Naether, A. et al. Environmental factors affect acidobacterial communities below the subgroup level in grassland and forest Soils. Appl. Environ. Microbiol. 78, 7398–7406 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Fierer, N. et al. Reconstructing the microbial diversity and function of pre-agricultural tallgrass prairie soils in the United States. Science 342, 621–624 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Fierer, N., Allen, A. S., Schimel, J. P. & Holden, P. A. Controls on microbial CO2 production: a comparison of surface and subsurface soil horizons. Glob. Change Biol. 9, 1322–1332 (2003).

    ADS 
    Article 

    Google Scholar 

  • Bergmann, G. T. et al. The under-recognized dominance of Verrucomicrobia in soil bacterial communities. Soil Biol. Biochem. 43, 1450–1455 (2011).

    CAS 
    Article 

    Google Scholar 

  • Moreno-Espíndola, I. P. et al. The bacterial community structure and microbial activity in a traditional organic milpa farming system under different soil moisture conditions. Front. Microbiol. 9, 2737 (2018).

    Article 

    Google Scholar 

  • Steven, B. et al. Resistance, resilience, and recovery of dryland soil bacterial communities across multiple disturbances. Front. Microbiol. 12, (2021).

  • Elliott, E. T., Anderson, R. V., Coleman, D. C. & Cole, C. V. Habitable pore space and microbial trophic interactions. Oikos 35, 327–335 (1980).

    Article 

    Google Scholar 

  • Bushby, H. V. A. & Marshall, K. C. Water status of rhizobia in relation to their susceptibility to desiccation and to their protection by montmorillonite. Microbiology 99, 19–27 (1977).

    Google Scholar 

  • Bitton, G., Henis, Y. & Lahav, N. Influence of clay minerals, humic acid and bacterial capsular polysaccharide on the survival of Klebsiella aerogenes exposed to drying and heating in soils. Plant Soil 45, 65–74 (1976).

    Article 

    Google Scholar 

  • Bastida, F. et al. Soil microbial diversity–biomass relationships are driven by soil carbon content across global biomes. ISME J. 15, 1–11 (2021).

    Article 

    Google Scholar 

  • Hernandez, D. J., David, A. S., Menges, E. S., Searcy, C. A. & Afkhami, M. E. Environmental stress destabilizes microbial networks. ISME J. 15, 1–13 (2021).

    Article 

    Google Scholar 

  • Jones, A. et al. (eds) Soil Atlas of Africa (European Commission. Publication Office of the European Union, 2013).

    Google Scholar 

  • Mehlich, A. Mehlich 3 soil test extractant: a modification of Mehlich 2 extractant. Commun. Soil Sci. Plant Anal. 15, 1409–1416 (1984).

    CAS 
    Article 

    Google Scholar 

  • Hadas, A., Kautsky, L., Goek, M. & Erman Kara, E. Rates of decomposition of plant residues and available nitrogen in soil, related to residue composition through simulation of carbon and nitrogen turnover. Soil Biol. Biochem. 36, 255–266 (2004).

    CAS 
    Article 

    Google Scholar 

  • Sagova-Mareckova, M. et al. Innovative methods for soil DNA purification tested in soils with widely differing characteristics. Appl. Environ. Microbiol. 74, 2902–2907 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Miller, D. N., Bryant, J. E., Madsen, E. L. & Ghiorse, W. C. Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples. Appl. Environ. Microbiol. 65, 4715–4724 (1999).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Schroeder, J., Kammann, L., Helfrich, M., Tebbe, C. C. & Poeplau, C. Impact of common sample pre-treatments on key soil microbial properties. Soil Biol. Biochem. 160, 108321 (2021).

    CAS 
    Article 

    Google Scholar 

  • Wang, F. et al. Air-drying and long time preservation of soil do not significantly impact microbial community composition and structure. Soil Biol. Biochem. 157, 108238 (2021).

    CAS 
    Article 

    Google Scholar 

  • Sirois, S. H. & Buckley, D. H. Factors governing extracellular DNA degradation dynamics in soil. Environ. Microbiol. Rep. 11, 173–184 (2019).

    CAS 
    Article 

    Google Scholar 

  • Carini, P. et al. Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nat. Microbiol. 2, 1–6 (2016).

    Google Scholar 

  • Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).

    CAS 
    Article 

    Google Scholar 

  • Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    CAS 
    Article 

    Google Scholar 

  • Mickan, B. S. et al. Soil disturbance and water stress interact to influence arbuscular mycorrhizal fungi, rhizosphere bacteria and potential for N and C cycling in an agricultural soil. Biol. Fertil. Soils 55, 53–66 (2019).

    CAS 
    Article 

    Google Scholar 

  • Lehman, C. L. & Tilman, D. Biodiversity, stability, and productivity in competitive communities. Am. Nat. 156, 534–552 (2000).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Looking forward to forecast the risks of a changing climate

    Sexual morph specialisation in a trioecious nematode balances opposing selective forces