Scott Baker, C. & Clapham, P. J. Modelling the past and future of whales and whaling. Trends Ecol. Evol. 19, 365–371. https://doi.org/10.1016/j.tree.2004.05.005 (2004).
Google Scholar
Clapham, P. J. & Baker, C. S. in Encyclopedia of Marine Mammals (eds W. F. Perrin, B. Würsig, & J. G. M. Thewissen) Ch. Modern Whaling, 1328–1332 (Academic Press, 2002).
International Whaling Commission. Twenty-Eighth Report of the International Whaling Commission. (International Whaling Commission, Cambridge, 1978).
International Whaling Commission. Thirty-Sixth Report of the International Whaling Commission. (International Whaling Commission, Cambridge, 1986).
Leaper, R. & Miller, C. Management of Antarctic baleen whales amid past exploitation, current threats and complex marine ecosystems. Antarct. Sci. 23, 503–529. https://doi.org/10.1017/s0954102011000708 (2011).
Google Scholar
Tulloch, V. J. D., Plagányi, É. E., Matear, R., Brown, C. J. & Richardson, A. J. Ecosystem modelling to quantify the impact of historical whaling on Southern Hemisphere baleen whales. Fish Fish. 19, 117–137. https://doi.org/10.1111/faf.12241 (2018).
Google Scholar
Kemp, S. & Bennett, A. G. On the distribution and movements of whales on the South Georgia and South Shetland whaling grounds. Discov. Rep. 6, 165–190 (1932).
Branch, T. A. & Butterworth, D. S. Estimates of abundance south of 60°S for cetacean species sighted frequently on the 1978/79 to 1997/98 IWC/IDCR-SOWER sighting surveys. J. Cetac. Res. Manag. 3, 251–270 (2001).
Reilly, S. et al. Biomass and energy transfer to baleen whales in the South Atlantic sector of the Southern Ocean. Deep Sea Res. Part II 51, 1397–1409. https://doi.org/10.1016/s0967-0645(04)00087-6 (2004).
Google Scholar
Cooke, J. G. Balaenoptera physalus. The IUCN Red List of Threatened Species 2018, e.T2478A50349982. https://doi.org/10.2305/IUCN.UK.2018-2.RLTS.T2478A50349982.en (2018).
Santora, J. A., Schroeder, I. D. & Loeb, V. J. Spatial assessment of fin whale hotspots and their association with krill within an important Antarctic feeding and fishing ground. Mar. Biol. 161, 2293–2305. https://doi.org/10.1007/s00227-014-2506-7 (2014).
Google Scholar
Santora, J. A., Reiss, C. S., Loeb, V. J. & Veit, R. R. Spatial association between hotspots of baleen whales and demographic patterns of Antarctic krill Euphausia superba suggests size-dependent predation. Mar. Ecol. Prog. Ser. 405, 255–269. https://doi.org/10.3354/meps08513 (2010).
Google Scholar
Burkhardt, E. et al. Seasonal and diel cycles of fin whale acoustic occurrence near Elephant Island, Antarctica. R Soc. Open Sci. 8, 201142. https://doi.org/10.1098/rsos.201142 (2021).
Google Scholar
Joiris, C. R. & Dochy, O. A major autumn feeding ground for fin whales, southern fulmars and grey-headed albatrosses around the South Shetland Islands, Antarctica. Polar Biol. 36, 1649–1658. https://doi.org/10.1007/s00300-013-1383-8 (2013).
Google Scholar
Herr, H. et al. Horizontal niche partitioning of humpback and fin whales around the West Antarctic Peninsula: Evidence from a concurrent whale and krill survey. Polar Biol. 39, 799–818. https://doi.org/10.1007/s00300-016-1927-9 (2016).
Google Scholar
Viquerat, S. & Herr, H. Mid-summer abundance estimates of fin whales Balaenoptera physalus around the South Orkney Islands and Elephant Island. Endanger. Spec. Res. 32, 515–524. https://doi.org/10.3354/esr00832 (2017).
Google Scholar
Meyer, B. & Wessels, W. The Expedition PS112 of the Research Vessel POLARSTERN to the Antarctic Peninsula Region in 2018. 125 p. (Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, 2018). https://doi.org/10.2312/BzPM_0722_2018
Knust, R. Polar research and supply vessel POLARSTERN operated by the Alfred-Wegener-Institute. J. Large-Scale Res. Facil. JLSRF 3, A119. https://doi.org/10.17815/jlsrf-3-163 (2017).
Google Scholar
Buckland, S. T. et al. Introduction to Distance Sampling: Estimating Abundance of Biological Populations (Oxford University Press, 2001).
Google Scholar
Herr, H. et al. Aerial surveys for Antarctic minke whales (Balaenoptera bonaerensis) reveal sea ice dependent distribution patterns. Ecol Evol 9, 5664–5682. https://doi.org/10.1002/ece3.5149 (2019).
Google Scholar
Dorschel, B. et al. Environmental information for a marine ecosystem research approach for the northern Antarctic Peninsula (RV Polarstern expedition PS81, ANT-XXIX/3). Polar Biol. 39, 765–787. https://doi.org/10.1007/s00300-015-1861-2 (2015).
Google Scholar
Miller, D. L., Burt, M. L., Rexstad, E. A., Thomas, L. & Gimenez, O. Spatial models for distance sampling data: recent developments and future directions. Methods Ecol. Evol. 4, 1001–1010. https://doi.org/10.1111/2041-210x.12105 (2013).
Google Scholar
Hedley, S. L. & Buckland, S. T. Spatial models for line transect sampling. J. Agric. Biol. Environ. Stat. 9, 181–199. https://doi.org/10.1198/1085711043578 (2004).
Google Scholar
Hammond, P. S. et al. Estimating the abundance of marine mammal populations. Front. Mar. Sci. https://doi.org/10.3389/fmars.2021.735770 (2021).
Google Scholar
Buckland, S. T. et al. Advanced Distance Sampling (Oxford University Press, 2007).
Miller, D. L., Rexstad, E., Thomas, L., Marshall, L. & Laake, J. L. Distance sampling in R. J. Stat. Softw. 89, 1–28. https://doi.org/10.18637/jss.v089.i01 (2019).
Google Scholar
Marques, F. F. C. & Buckland, S. T. in Advanced Distance Sampling (eds S. T. Buckland et al.) 31–47 (Oxford University Press, 2004).
Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 19, 716–723 (1974).
Google Scholar
Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semparametric generalized linear models. J. R. Stat. Soc. (B) 73, 3–36. https://doi.org/10.1111/j.1467-9868.2010.00749.x (2011).
Google Scholar
Wood, S. N., Pya, N. & Saefken, B. Smoothing parameter and model selection for general smooth models (with discussion). J. Am. Stat. Assoc. 111, 1548–1575. https://doi.org/10.1080/01621459.2016.1180986 (2016).
Google Scholar
Dorschel, B. et al. The International Bathymetric Chart of the Southern Ocean Version 2 (IBCSO v2). Scientific Data. https://doi.org/10.1038/s41597-022-01366-7 (2022).
Google Scholar
Wilson, M. F. J., O’Connell, B., Brown, C., Guinan, J. C. & Grehan, A. J. Multiscale terrain analysis of multibeam bathymetry data for habitat mapping on the continental slope. Mar. Geod. 30, 3–35. https://doi.org/10.1080/01490410701295962 (2007).
Google Scholar
raster: Geographic Data Analysis and Modelling. R package version 3.4–5 (2020).
Shelton, A. O., Thorson, J. T., Ward, E. J., Feist, B. E. & Cooper, A. Spatial semiparametric models improve estimates of species abundance and distribution. Can. J. Fish. Aquat. Sci. 71, 1655–1666. https://doi.org/10.1139/cjfas-2013-0508 (2014).
Google Scholar
Dunn, P. K. & Smyth, G. K. Series evaluation of Tweedie exponential dispersion model densities. Statiustics Comput. 15, 267–280 (2005).
Google Scholar
Gu, C. & Wahba, G. Minimizing GCV/GML scores with multiple smoothing parameters via the newton method. SIAM J. Sci. Stat. Comput. 12, 383–398. https://doi.org/10.1137/0912021 (1991).
Google Scholar
Hobson, E. S. Feeding behaviour in three species of sharks. Pac. Sci. 17, 171–194 (1963).
Weeks, S., Magno-Canto, M., Jaine, F., Brodie, J. & Richardson, A. Unique sequence of events triggers manta ray feeding frenzy in the Southern Great Barrier Reef, Australia. Remote Sens. 7, 3138–3152. https://doi.org/10.3390/rs70303138 (2015).
Google Scholar
Montero-Quintana, A. N., Ocampo-Valdez, C. F., Vázquez-Haikin, J. A., Sosa-Nishizaki, O. & Osorio-Beristain, M. Whale shark (Rhincodon typus) predatory flexible feeding behaviors on schooling fish. J. Ethol. 39, 399–410. https://doi.org/10.1007/s10164-021-00717-y (2021).
Google Scholar
Findlay, K. P. et al. Humpback whale “super-groups”—A novel low-latitude feeding behaviour of Southern Hemisphere humpback whales (Megaptera novaeangliae) in the Benguela Upwelling System. PLoS ONE 12, e0172002. https://doi.org/10.1371/journal.pone.0172002 (2017).
Google Scholar
Pirotta, V., Owen, K., Donnelly, D., Brasier, M. J. & Harcourt, R. First evidence of bubble-net feeding and the formation of ‘super-groups’ by the east Australian population of humpback whales during their southward migration. Aquat. Conserv. Mar. Freshwat. Ecosyst. 31, 2412–2419. https://doi.org/10.1002/aqc.3621 (2021).
Google Scholar
Baines, M., Reichelt, M. & Griffin, D. An autumn aggregation of fin (Balaenoptera physalus) and blue whales (B. musculus) in the Porcupine Seabight, southwest of Ireland. Deep Sea Res. Part II Top. Stud. Oceanogr. 141, 168–177, https://doi.org/10.1016/j.dsr2.2017.03.007 (2017).
Ladrón de Guevara P., P., Lavaniegos, B. E. & Heckel, G. Fin whales (Balaenoptera physalus) foraging on daytime surface swarms of the euphausiid Nyctiphanes simplex in Ballenas Channel, Gulf of California, Mexico. J. Mammal. 89, 559–566 (2008).
Bruce, W. S. Some observations on Antarctic cetacea. In: Report on the Scientific results of the voyage of S.Y. ‘Scotia’ during the years 1902, 1903, and 1904, under the leadership of William S. Bruce, 491–505 (1915).
Mackintosh, N. A. & Wheeler, J. F. G. Southern blue and fin whales. Discov. Rep. I, 257–540 (1929).
Jackson, J. A. et al. Have whales returned to a historical hotspot of industrial whaling? The pattern of southern right whale Eubalaena australis recovery at South Georgia. Endang. Spec. Res. 43, 323–339. https://doi.org/10.3354/esr01072 (2020).
Google Scholar
Goldbogen, J. A., Pyenson, N. D. & Shadwick, R. E. Big gulps require high drag for fin whale lunge feeding. Mar. Ecol. Prog. Ser. 349, 289–301. https://doi.org/10.3354/meps07066 (2007).
Google Scholar
Goldbogen, J. A. et al. Scaling of lunge-feeding performance in rorqual whales: mass-specific energy expenditure increases with body size and progressively limits diving capacity. Funct. Ecol. 26, 216–226. https://doi.org/10.1111/j.1365-2435.2011.01905.x (2012).
Google Scholar
Acevedo-Gutierrez, A., Croll, D. A. & Tershy, B. R. High feeding costs limit dive time in the largest whales. J Exp Biol 205, 1747–1753. https://doi.org/10.1242/jeb.205.12.1747 (2002).
Google Scholar
Keen, E. M. Aggregative and feeding thresholds of sympatric rorqual whales within a fjord system. Ecosphere 8, e01702. https://doi.org/10.1002/ecs2.1702 (2017).
Google Scholar
Veit, R. R. & Harrison, N. M. Positive interactions among foraging seabirds, marine mammals and fishes and implications for their conservation. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2017.00121 (2017).
Google Scholar
Laran, S. et al. A comprehensive survey of pelagic megafauna: their distribution, densities, and taxonomic richness in the tropical Southwest Indian Ocean. Front. Mar. Sci. https://doi.org/10.3389/fmars.2017.00139 (2017).
Google Scholar
Campbell, G. S. et al. Inter-annual and seasonal trends in cetacean distribution, density and abundance off southern California. Deep Sea Res. Part II Top. Stud. Oceanogr. 112, 143–157. https://doi.org/10.1016/j.dsr2.2014.10.008 (2015).
Google Scholar
Heide-Jørgensen, M. P. et al. Estimates of large whale abundance in West Greenland waters from an aerial survey in 2005. J. Cetac. Res. Manag. 10, 119–129 (2008).
Panigada, S. et al. Estimating cetacean density and abundance in the Central and Western Mediterranean Sea through aerial surveys: Implications for management. Deep Sea Res. Part II Top. Stud. Oceanogr. 141, 41–58. https://doi.org/10.1016/j.dsr2.2017.04.018 (2017).
Google Scholar
Forcada, J., Aguilar, A., Hammond, P., Pastor, X. & Aguilar, R. Distribution and abundance of fin whales (Balaenoptera physalus) in the western Mediterranean sea during the summer. J. Zool. 238, 23–34. https://doi.org/10.1111/j.1469-7998.1996.tb05377.x (2009).
Google Scholar
Clapham, P. J., Aguilar, A. & Hatch, L. T. Determining spatial and temporal scales for management: lessons from whaling. Mar. Mamm. Sci. 24, 183–201. https://doi.org/10.1111/j.1748-7692.2007.00175.x (2008).
Google Scholar
Baker, C. S. et al. Strong maternal fidelity and natal philopatry shape genetic structure in North Pacific humpback whales. Mar. Ecol. Prog. Ser. 494, 291–306. https://doi.org/10.3354/meps10508 (2013).
Google Scholar
Carroll, E. L. et al. Cultural traditions across a migratory network shape the genetic structure of southern right whales around Australia and New Zealand. Sci. Rep. 5, 16182. https://doi.org/10.1038/srep16182 (2015).
Google Scholar
Valenzuela, L. O., Sironi, M., Rowntree, V. J. & Seger, J. Isotopic and genetic evidence for culturally inherited site fidelity to feeding grounds in southern right whales (Eubalaena australis). Mol. Ecol. 18, 782–791. https://doi.org/10.1111/j.1365-294X.2008.04069.x (2009).
Google Scholar
Barendse, J., Best, P. B., Carvalho, I. & Pomilla, C. Mother knows best: occurrence and associations of resighted humpback whales suggest maternally derived fidelity to a Southern Hemisphere coastal feeding ground. PLoS ONE 8, e81238. https://doi.org/10.1371/journal.pone.0081238 (2013).
Google Scholar
Richard, G. et al. Cultural transmission of fine-scale fidelity to feeding sites may shape humpback whale genetic diversity in Russian Pacific waters. J. Hered. 109, 724–734. https://doi.org/10.1093/jhered/esy033 (2018).
Google Scholar
Carroll, E. L. et al. Reestablishment of former wintering grounds by New Zealand southern right whales. Mar. Mamm. Sci. 30, 206–220. https://doi.org/10.1111/mms.12031 (2014).
Google Scholar
Calderan, S. V. et al. South Georgia blue whales five decades after the end of whaling. Endang. Spec. Res. 43, 359–373. https://doi.org/10.3354/esr01077 (2020).
Google Scholar
Santora, J. A. & Veit, R. R. Spatio-temporal persistence of top predator hotspots near the Antarctic Peninsula. Mar. Ecol. Prog. Ser. 487, 287–304. https://doi.org/10.3354/meps10350 (2013).
Google Scholar
Scheidat, M. et al. Cetacean surveys in the Southern Ocean using icebreaker-supported helicopters. Polar Biol. 34, 1513–1522. https://doi.org/10.1007/s00300-011-1010-5 (2011).
Google Scholar
Williams, R., Hedley, S. L. & Hammond, P. S. Modeling distribution and abundance of Antarctic baleen whales using ships of opportunity. Ecol. Soc. 11, [online] http://www.ecologyandsociety.org/vol11/iss11/art11/ (2006).
Secchi, E. et al. Encounter rates of whales around the Antarctic peninsula with special reference to humpback whales, Megaptera novaeangliae, in the Gerlache Strait 1997–98 to 1999–2000. Mem. Qld. Mus. 47, 571–578 (2001).
Thiele, D. et al. Seasonal variability in whale encounters in the Western Antarctic Peninsula. Deep Sea Res. Part II Top. Stud. Oceanogr. 51, 2311–2325. https://doi.org/10.1016/j.dsr2.2004.07.007 (2004).
Google Scholar
Johnston, D. W., Friedlaender, A. S., Read, A. J. & Nowacek, D. P. Initial density estimates of humpback whales Megaptera novaeangliae in the inshore waters of the western Antarctic Peninsula during the late autumn. Endang. Spec. Res. 18, 63–71. https://doi.org/10.3354/esr00395 (2012).
Google Scholar
Zerbini, A. N. et al. Assessing the recovery of an Antarctic predator from historical exploitation. R Soc Open Sci 6, 190368. https://doi.org/10.1098/rsos.190368 (2019).
Google Scholar
Mackintosh, N. A. The distribution of southern blue and fin whales, in Whales, dolphins, and porpoises. (ed K. S. Norris) Ch. 8, 125–144 (University of California Press, 1966).
Schmitt, N. et al. Mixed-stock analysis of humpback whales (Megaptera novaeangliae) on Antarctic feeding grounds. J. Cetac. Res. Manag. 14, 141–157 (2014).
Schall, E. et al. Humpback whale song recordings suggest common feeding ground occupation by multiple populations. Sci. Rep. 11, 18806. https://doi.org/10.1038/s41598-021-98295-z (2021).
Google Scholar
Archer, F. I. et al. Revision of fin whale Balaenoptera physalus (Linnaeus, 1758) subspecies using genetics. J. Mammal. 100, 1653–1670. https://doi.org/10.1093/jmammal/gyz121 (2019).
Google Scholar
Archer, F. I. et al. Mitogenomic phylogenetics of fin whales (Balaenoptera physalus spp.): Genetic evidence for revision of subspecies. PLoS ONE 8, e63396. https://doi.org/10.1371/journal.pone.0063396 (2013).
Google Scholar
Cabrera, A. A. et al. Fin whale (Balaenoptera physalus) mitogenomics: A cautionary tale of defining sub-species from mitochondrial sequence monophyly. Mol. Phylogenet. Evol. 135, 86–97. https://doi.org/10.1016/j.ympev.2019.02.003 (2019).
Google Scholar
Edwards, E. F., Hall, C., Moore, T. J., Sheredy, C. & Redfern, J. V. Global distribution of fin whales Balaenoptera physalus in the post-whaling era (1980–2012). Mammal. Rev. 45, 197–214. https://doi.org/10.1111/mam.12048 (2015).
Google Scholar
Knox, G. A. The key role of krill in the ecosystem of the Southern Ocean with special reference to the Convention on the Conservation of Antarctic Marine Living Resources. Ocean Manag. 9, 113–156 (1984).
Google Scholar
Ducklow, H. W. et al. Marine pelagic ecosystems: the west Antarctic Peninsula. Philos. Trans. R. Soc. Lond. B Biol. Sci. 362, 67–94. https://doi.org/10.1098/rstb.2006.1955 (2007).
Google Scholar
Atkinson, A. et al. Krill (Euphausia superba) distribution contracts southward during rapid regional warming. Nat. Clim. Change 9, 142–147. https://doi.org/10.1038/s41558-018-0370-z (2019).
Google Scholar
Benton, M. J., Tverdokhlebov, V. P. & Surkov, M. V. Ecosystem remodelling among vertebrates at the Permian-Triassic boundary in Russia. Nature 432, 97–100. https://doi.org/10.1038/nature02950 (2004).
Google Scholar
Siegel, V., Reiss, C. S., Dietrich, K. S., Haraldsson, M. & Rohardt, G. Distribution and abundance of Antarctic krill (Euphausia superba) along the Antarctic Peninsula. Deep Sea Res. Part I Oceanogr. Res. Pap. 77, 63–74. https://doi.org/10.1016/j.dsr.2013.02.005 (2013).
Google Scholar
Siegel, V. & Watkins, L. Distribution, Biomass and Demography of Antarctic Krill, Euphausia superba, in Biology and Ecology of Antarctic Krill Advances in Polar Ecology (ed Volker Siegel) Ch. 2, 21–101 (Springer, 2016).
Roman, J. et al. Whales as marine ecosystem engineers. Front. Ecol. Environ. 12, 377–385. https://doi.org/10.1890/130220 (2014).
Google Scholar
Savoca, M. S. et al. Baleen whale prey consumption based on high-resolution foraging measurements. Nature 599, 85–90. https://doi.org/10.1038/s41586-021-03991-5 (2021).
Google Scholar
Atkinson, A., Siegel, V., Pakhomov, E. A., Jessopp, M. J. & Loeb, V. A re-appraisal of the total biomass and annual production of Antarctic krill. Deep Sea Res. Part I Oceangr. Res. Pap. 56, 727–740. https://doi.org/10.1016/j.dsr.2008.12.007 (2009).
Google Scholar
Nicol, S. et al. Southern Ocean iron fertilization by baleen whales and Antarctic krill. Fish Fish. 11, 203–209. https://doi.org/10.1111/j.1467-2979.2010.00356.x (2010).
Google Scholar
Lavery, T. J. et al. Whales sustain fisheries: Blue whales stimulate primary production in the Southern Ocean. Mar. Mamm. Sci. 30, 888–904. https://doi.org/10.1111/mms.12108 (2014).
Google Scholar
Smetacek, V. Are declining Antarctic krill stocks a result of global warming or of the decimation of the whales? in Effects of global warming on polar ecosystems (ed Carlos M. Duarte) (Fundación BBVA, 2008).
Roman, J. & McCarthy, J. J. The whale pump: marine mammals enhance primary productivity in a coastal basin. PLoS ONE 5, e13255. https://doi.org/10.1371/journal.pone.0013255 (2010).
Google Scholar
Smetacek, V. A whale of an appetite revealed by analysis of prey consumption. Nature 599, 33–34. https://doi.org/10.1038/d41586-021-02951-3 (2021).
Google Scholar
Laws, R. M. Seals and whales of the Southern Ocean. Philios. Trans. R. Soc. Lond. B 279, 81–96 (1977).
Google Scholar
Lavery, T. J. et al. Iron defecation by sperm whales stimulates carbon export in the Southern Ocean. Proc. Biol. Sci. 277, 3527–3531. https://doi.org/10.1098/rspb.2010.0863 (2010).
Google Scholar
Cunningham, S. A. Transport and variability of the Antarctic Circumpolar Current in Drake Passage. J. Geophys. Res. https://doi.org/10.1029/2001jc001147 (2003).
Google Scholar
Frölicher, T. L. et al. Dominance of the Southern Ocean in Anthropogenic Carbon and Heat Uptake in CMIP5 Models. J. Clim. 28, 862–886. https://doi.org/10.1175/jcli-d-14-00117.1 (2015).
Google Scholar
Landschutzer, P. et al. The reinvigoration of the Southern Ocean carbon sink. Science 349, 1221–1224. https://doi.org/10.1126/science.aab2620 (2015).
Google Scholar
Source: Ecology - nature.com