in

Rewetting global wetlands effectively reduces major greenhouse gas emissions

  • Lindgren, A., Hugelius, G. & Kuhry, P. Extensive loss of past permafrost carbon but a net accumulation into present-day soils. Nature 560, 219–222 (2018).

    Article 

    Google Scholar 

  • Nichols, J. E. & Peteet, D. M. Rapid expansion of northern peatlands and doubled estimate of carbon storage. Nat. Geosci. 12, 917–921 (2019).

    Article 

    Google Scholar 

  • Bridgham, S. D. et al. The carbon balance of North American wetlands. Wetlands 26, 889–916 (2006).

    Article 

    Google Scholar 

  • Dixon, M. J. R. et al. Tracking global change in ecosystem area: the wetland extent trends index. Biol. Conserv. 193, 27–35 (2016).

    Article 

    Google Scholar 

  • Darrah, S. E. et al. Improvements to the Wetland Extent Trends (WET) index as a tool for monitoring natural and human-made wetlands. Ecol. Indic. 99, 294–298 (2019).

    Article 

    Google Scholar 

  • Asselen, S. et al. Drivers of wetland conversion: a global meta-analysis. PLoS ONE 8, e81292 (2013).

    Article 

    Google Scholar 

  • Davidson, N. C. How much wetland has the world lost? Long-term and recent trends in global wetland area. Mar. Freshw. Res. 65, 934–941 (2014).

    Article 

    Google Scholar 

  • Galatowitsch, S. M. in The Wetland Book II: Distribution, Description, and Conservation (eds Finlayson, C.M. et al.) 359–367 (Springer, 2018).

  • Limpert, K. E. et al. Reducing emissions from degraded floodplain wetlands. Front. Environ. Sci. 8, 8 (2020); https://doi.org/10.3389/fenvs.2020.00008

  • Laine, J. et al. Effect of water-level drawdown on global climatic warming: northern peatlands. AMBIO 25, 179–184 (1996).

    Google Scholar 

  • Ise, T. et al. High sensitivity of peat decomposition to climate change through water-table feedback. Nat. Geosci. 1, 763–766 (2008).

    Article 

    Google Scholar 

  • Saunois, M. et al. The global methane budget 2000–2017. Earth. Syst. Sci. Data 12, 1561–1623 (2020).

    Article 

    Google Scholar 

  • Leifeld, J. et al. Intact and managed peatland soils as a source and sink of GHGs from 1850 to 2100. Nat. Clim. Change 9, 945–947 (2019).

    Article 

    Google Scholar 

  • Günther, A. et al. Prompt rewetting of drained peatlands reduces climate warming despite methane emissions. Nat. Commun. 11, 1644 (2020).

    Article 

    Google Scholar 

  • Hooijer, A. et al. Subsidence and carbon loss in drained tropical peatlands. Biogeoscience 9, 1053–1071 (2012).

    Article 

    Google Scholar 

  • Prananto, J. A. et al. Drainage increases CO2 and N2O emissions from tropical peat soils. Glob. Change Biol. 26, 4583–4600 (2020).

    Article 

    Google Scholar 

  • Jauhiainen, J. et al. Carbon dioxide and methane fluxes in drained tropical peat before and after hydrological restoration. Ecology 89, 3503–3514 (2008).

    Article 

    Google Scholar 

  • Bridgham, S. D. et al. Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales. Glob. Change Biol. 19, 1325–1346 (2013).

    Article 

    Google Scholar 

  • Schuldt, R. et al. Modelling Holocene carbon accumulation and methane emissions of boreal wetlands—an Earth system model approach. Biogeosciences 10, 1659–1674 (2012).

    Article 

    Google Scholar 

  • McNicol, G. et al. Effects of seasonality, transport pathway, and spatial structure on greenhouse gas fluxes in a restored wetland. Glob. Change Biol. 23, 2768–2782 (2017).

    Article 

    Google Scholar 

  • Yu, K. et al. Redox window with minimum global warming potential contribution from rice soils. Soil Sci. Soc. Am. J. 68, 2086–2091 (2004).

    Article 

    Google Scholar 

  • Huang, Y. et al. Tradeoff of CO2 and CH4 emissions from global peatlands under water-table drawdown. Nat. Clim. Change 11, 618–622 (2021).

    Article 

    Google Scholar 

  • Ojanen, P. & Minkkinen, K. Rewetting offers rapid climate benefits for tropical and agricultural peatlands but not for forestry‐drained peatlands. Glob. Biogeochem. Cycles 34, e2019GB006503 (2020).

    Article 

    Google Scholar 

  • Evans, C. D. et al. Overriding water table control on managed peatland greenhouse gas emissions. Nature 593, 548–552 (2021).

    Google Scholar 

  • Strack, M., Keith, A. M. & Xu, B. Growing season carbon dioxide and methane exchange at a restored peatland on the Western Boreal Plain. Ecol. Eng. 64, 231–239 (2014).

    Article 

    Google Scholar 

  • Karki, S. et al. Carbon balance of rewetted and drained peat soils used for biomass production: a mesocosm study. Glob. Change Biol. Bioenergy 8, 969–980 (2016).

    Article 

    Google Scholar 

  • Whiting, G. J. & Chanton, J. P. Greenhouse carbon balance of wetlands: methane emission versus carbon sequestration. Tellus B 53, 521–528 (2001).

    Google Scholar 

  • Moore, T. R. et al. A multi-year record of methane flux at the Mer Bleue Bog, Southern Canada. Ecosystems 14, 646–657 (2011).

    Article 

    Google Scholar 

  • Zhu, X. et al. Ammonia oxidation pathways and nitrifier denitrification are significant sources of N2O and NO under low oxygen availability. Proc. Natl Acad. Sci. USA 110, 6328–6333 (2013).

    Article 

    Google Scholar 

  • Cole, J. J. et al. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10, 171–184 (2007).

    Article 

    Google Scholar 

  • Holgerson, M. A. & Raymond, P. A. Large contribution to inland water CO2 and CH4 emissions from very small ponds. Nat. Geosci. 9, 222–226 (2016).

    Article 

    Google Scholar 

  • Raymond, P. A. et al. Global carbon dioxide emissions from inland waters. Nature 503, 355–359 (2013).

    Article 

    Google Scholar 

  • Rosentreter, J. A. et al. Half of global methane emissions come from highly variable aquatic ecosystem sources. Nat. Geosci. 14, 225–230 (2021).

    Article 

    Google Scholar 

  • Lehner, B. & Döll, P. Development and validation of a global database of lakes, reservoirs and wetlands. J. Hydrol. 296, 1–22 (2004).

    Article 

    Google Scholar 

  • Schuur, E. A. et al. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature 459, 556–559 (2009).

    Article 

    Google Scholar 

  • Delgado-Baquerizo, M. et al. Climate legacies drive global soil carbon stocks in terrestrial ecosystems. Sci. Adv. 3, e1602008 (2017).

    Article 

    Google Scholar 

  • Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).

    Article 

    Google Scholar 

  • Walker, X. J. et al. Increasing wildfires threaten historic carbon sink of boreal forest soils. Nature 572, 520–523 (2019).

    Article 

    Google Scholar 

  • Baird, A. J. et al. Validity of managing peatlands with fire. Nat. Geosci. 12, 884–885 (2019).

    Article 

    Google Scholar 

  • Ritchie, H., Roser, M. & Rosado, P. CO2 and GHG Emissions: Atmospheric Concentrations (Our World in Data, 2020); https://ourworldindata.org/atmospheric-concentrations#citation

  • Friedlingstein, P. et al. Global carbon budget 2019. Earth Syst. Sci. Data 11, 1783–1838 (2019).

    Article 

    Google Scholar 

  • Tian, H. et al. A comprehensive quantification of global nitrous oxide sources and sinks. Nature 586, 248–256 (2020).

    Article 

    Google Scholar 

  • Cook-Patton, S. C. et al. Mapping carbon accumulation potential from global natural forest regrowth. Nature 585, 545–550 (2020).

    Article 

    Google Scholar 

  • Jaenicke, J. et al. Planning hydrological restoration of peatlands in Indonesia to mitigate carbon dioxide emissions. Mitig. Adapt. Strateg. Glob. Change 15, 223–239 (2010).

    Article 

    Google Scholar 

  • Wohl, E. Landscape-scale carbon storage associated with beaver dams. Geophys. Res. Lett. 40, 3631–3636 (2013).

    Article 

    Google Scholar 

  • Law, A. et al. Using ecosystem engineers as tools in habitat restoration and rewilding: beaver and wetlands. Sci. Total Environ. 605–606, 1021–1030 (2017).

    Article 

    Google Scholar 

  • Brown, L. E. et al. Macroinvertebrate community assembly in pools created during peatland restoration. Sci. Total Environ. 569, 361–372 (2016).

    Article 

    Google Scholar 

  • Finlayson, C. M. & Rea, N. Reasons for the loss and degradation of Australian wetlands. Wetl. Ecol. Manage. 7, 1–11 (1999).

    Article 

    Google Scholar 

  • Liu, J. et al. Water conservancy projects in China: achievements, challenges and way forward. Glob. Environ. Change 23, 633–643 (2013).

    Article 

    Google Scholar 

  • Rogelj, J. et al. in Special Report on Global Warming of 1.5°C (eds Masson-Delmotte, V. et al.) Ch. 2 (IPCC, WMO, 2018).

  • Svensson, B. H. & Rosswall, T. In situ methane production from acid peat in plant communities with different moisture regimes in a subarctic mire. Oikos 43, 341–350 (1984).

    Article 

    Google Scholar 

  • Waddington, J. M. & Roulet, N. T. Atmosphere–wetland carbon exchanges: scale dependency of CO2 and CH4 exchange on the developmental topography of a peatland. Glob. Biogeochem. Cycles 10, 233–245 (1996).

    Article 

    Google Scholar 

  • Kling, G. W. et al. The flux of CO2 and CH4 from lakes and rivers in Arctic Alaska. Hydrobiologia 240, 23–36 (1992).

    Article 

    Google Scholar 

  • Humphreys, E. R. et al. Two bogs in the Canadian Hudson Bay lowlands and a temperate bog reveal similar annual net ecosystem exchange of CO2. Arct. Antarct. Alp. Res. 46, 103–113 (2014).

    Article 

    Google Scholar 

  • Caffrey, J. M. Factors controlling net ecosystem metabolism in US estuaries. Estuaries 27, 90–101 (2004).

    Article 

    Google Scholar 

  • Roberts, B. J. et al. Multiple scales of temporal variability in ecosystem metabolism rates: results from 2 years of continuous monitoring in a forested headwater stream. Ecosystems 10, 588–606 (2007).

    Article 

    Google Scholar 

  • Myhre, G. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T.F. et al.) 710–714 (Cambridge Univ. Press, 2013).

  • Glenn, A. J. et al. Comparison of net ecosystem CO2 exchange in two peatlands in western Canada with contrasting dominant vegetation, Sphagnum and Carex. Agric. For. Meteorol. 140, 115–135 (2006).

    Article 

    Google Scholar 

  • Bond-Lamberty, B. & Thomson, A. Temperature-associated increases in the global soil respiration record. Nature 464, 579–582 (2010).

    Article 

    Google Scholar 

  • Zhao, J. et al. Intensified inundation shifts a freshwater wetland from a CO2 sink to a source. Glob. Change Biol. 25, 3319–3333 (2019).

    Article 

    Google Scholar 

  • Peichl, M. et al. A 12-year record reveals pre-growing season temperature and water table level threshold effects on the net carbon dioxide exchange in a boreal fen. Environ. Res. Lett. 9, 55006 (2014).

    Article 

    Google Scholar 

  • Peng, Z. & Peng, G. Suitability mapping of global wetland areas and validation with remotely sensed data. Sci. China Earth Sci. 57, 2883–2892 (2014).

    Google Scholar 

  • Zhang, B. et al. Methane emissions from global wetlands: an assessment of the uncertainty associated with various wetland extent data sets. Atmos. Environ. 165, 310–321 (2017).

    Article 

    Google Scholar 

  • Gumbricht, T. et al. An expert system model for mapping tropical wetlands and peatlands reveals South America as the largest contributor. Glob. Change Biol. 23, 3581–3599 (2017).

    Article 

    Google Scholar 

  • ERA5 Monthly Averaged Data on Pressure Levels from 1979 to Present (ECMWF, 2020); https://doi.org/10.24381/cds.6860a573

  • FAOSTAT Emissions Database (FAO, 2020); http://www.fao.org/faostat/en/#data/GT

  • Qiu, C. et al. Large historical carbon emissions from cultivated northern peatlands. Sci. Adv. 7, eabf1332 (2021).

    Article 

    Google Scholar 

  • Frolking, S., Roulet, N. & Fuglestvedt, J. How northern peatlands influence the Earth’s radiative budget: sustained methane emission versus sustained carbon sequestration. J. Geophys. Res. Biogeosci. 111, G01008 (2006).

    Google Scholar 

  • Neubauer, S. C. & Megonigal, J. P. Moving beyond global warming potentials to quantify the climatic role of ecosystems. Ecosystems 18, 1000–1013 (2015).

    Article 

    Google Scholar 

  • Matthews, E. & Fung, I. Methane emission from natural wetlands: global distribution, area, and environmental characteristics of sources. Glob. Biogeochem. Cycles 1, 61–86 (1987).

    Article 

    Google Scholar 

  • Melton, J. R. et al. Present state of global wetland extent and wetland methane modelling: conclusions from a model inter-comparison project (WETCHIMP). Biogeosciences 10, 753–788 (2013).

    Article 

    Google Scholar 

  • Papa, F. et al. Interannual variability of surface water extent at the global scale, 1993–2004. J. Geophys. Res. Atmos. 115, D12111 (2010).

    Article 

    Google Scholar 

  • Junk, W. J. et al. Current state of knowledge regarding the world’s wetlands and their future under global climate change: a synthesis. Aquat. Sci. 75, 151–167 (2013).

    Article 

    Google Scholar 

  • Schroeder, R. et al. Development and evaluation of a multi-year fractional surface water data set derived from active/passive microwave remote sensing data. Remote Sens. 7, 16688–16732 (2015).

    Article 

    Google Scholar 

  • Vanessa, R. et al. A global assessment of inland wetland conservation status. Bioscience 6, 523–533 (2017).

    Google Scholar 

  • Davidson, N. et al. Global extent and distribution of wetlands: trends and issues. Mar. Freshw. Res. 69, 620–627 (2018).

    Article 

    Google Scholar 

  • ArcWorld 1:3 M. Continental Coverage (ESRI, 1992); http://www.oceansatlas.org/subtopic/en/c/593/

  • Digital Chart of the World 1:1 M (ESRI, 1993); https://www.ngdc.noaa.gov/mgg/topo/report/s5/s5Avii.html

  • Global Wetlands (UNEP-WCMC, 1993); https://www.arcgis.com/home/item.html?id=105a402642e146eaa665315279a322d1

  • Moreno-Mateos, D. et al. Structural and functional loss in restored wetland ecosystems. PLoS Biol. 10, e1001247 (2012).

    Article 

    Google Scholar 

  • Ramsar COP12 DOC.8 Report of the Secretary General to COP12 on the Implementation of the Convention (Ramsar Convention Secretariat, 2015).

  • Page, S. E. et al. Peatlands and global change: response and resilience. Annu. Rev. Environ. Resour. 41, 35–57 (2016).

    Article 

    Google Scholar 

  • Swindles, G. T. et al. Widespread drying of European peatlands in recent centuries. Nat. Geosci. 12, 922–928 (2019).

    Article 

    Google Scholar 

  • Reply to: Fire activity as measured by burned area reveals weak effects of ENSO in China

    Factors associated with the differential distribution of cetaceans linked with deep habitats in the Western Mediterranean Sea