Zabalza, A., Orcaray, L., Fernandez-Escalada, M., Zulet-Gonzalez, A. & Royuela, M. The pattern of shikimate pathway and phenylpropanoids after inhibition by glyphosate or quinate feeding in pea roots. Pestic Biochem. Physiol. 141, 96–102. https://doi.org/10.1016/j.pestbp.2016.12.005 (2017).
Google Scholar
Amrhein, N., Deus, B., Gehrke, P. & Steinrucken, H. C. The site of the inhibition of the shikimate pathway by glyphosate: II. Interference of glyphosate with chorismate formation in vivo and in vitro. Plant Physiol. 66, 830–834. https://doi.org/10.1104/pp.66.5.830 (1980).
Google Scholar
Landrigan, P. J. & Belpoggi, F. The need for independent research on the health effects of glyphosate-based herbicides. Environ. Health 17, 51. https://doi.org/10.1186/s12940-018-0392-z (2018).
Google Scholar
Tu, M. & Randall, J. Adjuvants. Tu, M. et al. Weed Control Methods Handbook the Nature Conservancy. 1–24. (TNC, 2003).
Brausch, J. M. & Smith, P. N. Toxicity of three polyethoxylated tallowamine surfactant formulations to laboratory and field collected fairy shrimp, Thamnocephalus platyurus. Arch. Environ. Contam. Toxicol. 52, 217–221. https://doi.org/10.1007/s00244-006-0151-y (2007).
Google Scholar
Brausch, J. M., Beall, B. & Smith, P. N. Acute and sub-lethal toxicity of three POEA surfactant formulations to Daphnia magna. Bull. Environ. Contam. Toxicol. 78, 510–514. https://doi.org/10.1007/s00128-007-9091-0 (2007).
Google Scholar
Tsui, M. T. & Chu, L. M. Aquatic toxicity of glyphosate-based formulations: Comparison between different organisms and the effects of environmental factors. Chemosphere 52, 1189–1197. https://doi.org/10.1016/S0045-6535(03)00306-0 (2003).
Google Scholar
Adam, A., Marzuki, A., Abdul Rahman, H. & Abdul Aziz, M. The oral and intratracheal toxicities of ROUNDUP and its components to rats. Vet. Hum. Toxicol. 39, 147–151 (1997).
Google Scholar
Howe, C. M. et al. Toxicity of glyphosate-based pesticides to four North American frog species. Environ. Toxicol. Chem. 23, 1928–1938. https://doi.org/10.1897/03-71 (2004).
Google Scholar
Mesnage, R., Benbrook, C. & Antoniou, M. N. Insight into the confusion over surfactant co-formulants in glyphosate-based herbicides. Food Chem. Toxicol. 128, 137–145. https://doi.org/10.1016/j.fct.2019.03.053 (2019).
Google Scholar
Mesnage, R., Bernay, B. & Seralini, G. E. Ethoxylated adjuvants of glyphosate-based herbicides are active principles of human cell toxicity. Toxicology 313, 122–128. https://doi.org/10.1016/j.tox.2012.09.006 (2013).
Google Scholar
Chlopecka, M., Mendel, M., Dziekan, N. & Karlik, W. The effect of glyphosate-based herbicide Roundup and its co-formulant, POEA, on the motoric activity of rat intestine—In vitro study. Environ. Toxicol. Pharmacol. 49, 156–162. https://doi.org/10.1016/j.etap.2016.12.010 (2017).
Google Scholar
Authority, E. F. S. Request for the evaluation of the toxicological assessment of the co-formulant POE-tallowamine. EFSA J. 13, 4303 (2015).
Bolognesi, C. et al. Genotoxic activity of glyphosate and its technical formulation Roundup. J. Agric. Food Chem. 45, 1957–1962 (1997).
Google Scholar
Hao, Y. et al. Roundup((R)) confers cytotoxicity through DNA damage and mitochondria-associated apoptosis induction. Environ. Pollut. 252, 917–923. https://doi.org/10.1016/j.envpol.2019.05.128 (2019).
Google Scholar
Luo, L. et al. In vitro cytotoxicity assessment of roundup (glyphosate) in L-02 hepatocytes. J. Environ. Sci. Health B 52, 410–417. https://doi.org/10.1080/03601234.2017.1293449 (2017).
Google Scholar
Young, F., Ho, D., Glynn, D. & Edwards, V. Endocrine disruption and cytotoxicity of glyphosate and roundup in human JAr cells in vitro. Synthesis 14, 17 (2015).
Weinhold, B. Mystery in a bottle: Will the EPA require public disclosure of inert pesticide ingredients?. Environ. Health Perspect. 118, A168-171. https://doi.org/10.1289/ehp.118-a168 (2010).
Google Scholar
Richmond, M. E. Glyphosate: A review of its global use, environmental impact, and potential health effects on humans and other species. J. Environ. Stud. Sci. 8, 416–434 (2018).
Google Scholar
Cole, R. D., Anderson, G. L. & Williams, P. L. The nematode Caenorhabditis elegans as a model of organophosphate-induced mammalian neurotoxicity. Toxicol. Appl. Pharmacol. 194, 248–256. https://doi.org/10.1016/j.taap.2003.09.013 (2004).
Google Scholar
Lai, C. H., Chou, C. Y., Ch’ang, L. Y., Liu, C. S. & Lin, W. Identification of novel human genes evolutionarily conserved in Caenorhabditis elegans by comparative proteomics. Genome Res. 10, 703–713. https://doi.org/10.1101/gr.10.5.703 (2000).
Google Scholar
Negga, R. et al. Exposure to glyphosate- and/or Mn/Zn-ethylene-bis-dithiocarbamate-containing pesticides leads to degeneration of gamma-aminobutyric acid and dopamine neurons in Caenorhabditis elegans. Neurotox. Res. 21, 281–290. https://doi.org/10.1007/s12640-011-9274-7 (2012).
Google Scholar
Negga, R. et al. Exposure to Mn/Zn ethylene-bis-dithiocarbamate and glyphosate pesticides leads to neurodegeneration in Caenorhabditis elegans. Neurotoxicology 32, 331–341. https://doi.org/10.1016/j.neuro.2011.02.002 (2011).
Google Scholar
Schuske, K., Beg, A. A. & Jorgensen, E. M. The GABA nervous system in C. elegans. Trends Neurosci. 27, 407–414. https://doi.org/10.1016/j.tins.2004.05.005 (2004).
Google Scholar
McIntire, S. L., Jorgensen, E. & Horvitz, H. R. Genes required for GABA function in Caenorhabditis elegans. Nature 364, 334–337. https://doi.org/10.1038/364334a0 (1993).
Google Scholar
Eastman, C., Horvitz, H. R. & Jin, Y. Coordinated transcriptional regulation of the unc-25 glutamic acid decarboxylase and the unc-47 GABA vesicular transporter by the Caenorhabditis elegans UNC-30 homeodomain protein. J. Neurosci. 19, 6225–6234 (1999).
Google Scholar
Bamber, B. A., Beg, A. A., Twyman, R. E. & Jorgensen, E. M. The Caenorhabditis elegans unc-49 locus encodes multiple subunits of a heteromultimeric GABA receptor. J. Neurosci. 19, 5348–5359 (1999).
Google Scholar
Risley, M. G., Kelly, S. P., Jia, K., Grill, B. & Dawson-Scully, K. Modulating behavior in C. elegans using electroshock and antiepileptic drugs. PLoS ONE 11, e0163786. https://doi.org/10.1371/journal.pone.0163786 (2016).
Google Scholar
Pandey, R. et al. Baccoside A suppresses epileptic-like seizure/convulsion in Caenorhabditis elegans. Seizure 19, 439–442. https://doi.org/10.1016/j.seizure.2010.06.005 (2010).
Google Scholar
Risley, M. G., Kelly, S. P. & Dawson-Scully, K. Electroshock induced seizures in adult C. elegans. Bio-Protoc. 7, 163786 (2017).
Google Scholar
Risley, M. G., Kelly, S. P., Minnerly, J., Jia, K. & Dawson-Scully, K. egl-4 modulates electroconvulsive seizure duration in C. elegans. Invert. Neurosci. 18, 8. https://doi.org/10.1007/s10158-018-0211-9 (2018).
Google Scholar
McVey, K. A. et al. Exposure of C. elegans eggs to a glyphosate-containing herbicide leads to abnormal neuronal morphology. Neurotoxicol. Teratol. 55, 23–31. https://doi.org/10.1016/j.ntt.2016.03.002 (2016).
Google Scholar
Burchfield, S. L. et al. Acute exposure to a glyphosate-containing herbicide formulation inhibits Complex II and increases hydrogen peroxide in the model organism Caenorhabditis elegans. Environ. Toxicol. Pharmacol. 66, 36–42. https://doi.org/10.1016/j.etap.2018.12.019 (2019).
Google Scholar
Weisskopf, M. G., Moisan, F., Tzourio, C., Rathouz, P. J. & Elbaz, A. Pesticide exposure and depression among agricultural workers in France. Am. J. Epidemiol. 178, 1051–1058. https://doi.org/10.1093/aje/kwt089 (2013).
Google Scholar
Kamel, F. et al. Pesticide exposure and self-reported Parkinson’s disease in the agricultural health study. Am. J. Epidemiol. 165, 364–374. https://doi.org/10.1093/aje/kwk024 (2007).
Google Scholar
Tanner, C. M. Advances in environmental epidemiology. Mov. Disord. 25(Suppl 1), S58-62. https://doi.org/10.1002/mds.22721 (2010).
Google Scholar
Dick, F. D. Parkinson’s disease and pesticide exposures. Br. Med. Bull. 79–80, 219–231. https://doi.org/10.1093/bmb/ldl018 (2006).
Google Scholar
Brown, T. P., Rumsby, P. C., Capleton, A. C., Rushton, L. & Levy, L. S. Pesticides and Parkinson’s disease–Is there a link?. Environ. Health Perspect. 114, 156–164. https://doi.org/10.1289/ehp.8095 (2006).
Google Scholar
Firestone, J. A. et al. Pesticides and risk of Parkinson disease: A population-based case-control study. Arch. Neurol. 62, 91–95. https://doi.org/10.1001/archneur.62.1.91 (2005).
Google Scholar
Martinez, M. A. et al. Neurotransmitter changes in rat brain regions following glyphosate exposure. Environ. Res. 161, 212–219. https://doi.org/10.1016/j.envres.2017.10.051 (2018).
Google Scholar
Kalueff, A. V. & Nutt, D. J. Role of GABA in anxiety and depression. Depress. Anxiety 24, 495–517. https://doi.org/10.1002/da.20262 (2007).
Google Scholar
Mohler, H. The GABA system in anxiety and depression and its therapeutic potential. Neuropharmacology 62, 42–53. https://doi.org/10.1016/j.neuropharm.2011.08.040 (2012).
Google Scholar
Brambilla, P., Perez, J., Barale, F., Schettini, G. & Soares, J. C. GABAergic dysfunction in mood disorders. Mol. Psychiatry 8, 721–737. https://doi.org/10.1038/sj.mp.4001362 (2003) (715).
Google Scholar
Xia, G. et al. Reciprocal control of obesity and anxiety-depressive disorder via a GABA and serotonin neural circuit. Mol. Psychiatry 26, 2837–2853. https://doi.org/10.1038/s41380-021-01053-w (2021).
Google Scholar
Martinez, A. & Al-Ahmad, A. J. Effects of glyphosate and aminomethylphosphonic acid on an isogeneic model of the human blood-brain barrier. Toxicol. Lett. 304, 39–49. https://doi.org/10.1016/j.toxlet.2018.12.013 (2019).
Google Scholar
Goetz, T., Arslan, A., Wisden, W. & Wulff, P. GABA(A) receptors: Structure and function in the basal ganglia. Prog. Brain Res. 160, 21–41. https://doi.org/10.1016/S0079-6123(06)60003-4 (2007).
Google Scholar
Shaw, W. Elevated urinary glyphosate and clostridia metabolites with altered dopamine metabolism in triplets with autistic spectrum disorder or suspected seizure disorder: A case study. Integr. Med. (Encinitas) 16, 50–57 (2017).
Gaupp-Berghausen, M., Hofer, M., Rewald, B. & Zaller, J. G. Glyphosate-based herbicides reduce the activity and reproduction of earthworms and lead to increased soil nutrient concentrations. Sci. Rep. 5, 12886. https://doi.org/10.1038/srep12886 (2015).
Google Scholar
Kanabar, M. et al. Roundup negatively impacts the behavior and nerve function of the Madagascar hissing cockroach (Gromphadorhina portentosa). Environ. Sci. Pollut. Res. Int. https://doi.org/10.1007/s11356-021-13021-6 (2021).
Google Scholar
Loscher, W., Fassbender, C. P. & Nolting, B. The role of technical, biological and pharmacological factors in the laboratory evaluation of anticonvulsant drugs. II. Maximal electroshock seizure models. Epilepsy Res. 8, 79–94. https://doi.org/10.1016/0920-1211(91)90075-q (1991).
Google Scholar
Castel-Branco, M. M., Alves, G. L., Figueiredo, I. V., Falcao, A. C. & Caramona, M. M. The maximal electroshock seizure (MES) model in the preclinical assessment of potential new antiepileptic drugs. Methods Find. Exp. Clin. Pharmacol. 31, 101–106. https://doi.org/10.1358/mf.2009.31.2.1338414 (2009).
Google Scholar
Luszczki, J. J. et al. Anticonvulsant and acute neurotoxic effects of imperatorin, osthole and valproate in the maximal electroshock seizure and chimney tests in mice: A comparative study. Epilepsy Res. 85, 293–299. https://doi.org/10.1016/j.eplepsyres.2009.03.027 (2009).
Google Scholar
Suthakaran, N. et al. O-GlcNAc transferase OGT-1 and the ubiquitin ligase EEL-1 modulate seizure susceptibility in C. elegans. PLoS ONE 16, e0260072. https://doi.org/10.1371/journal.pone.0260072 (2021).
Google Scholar
Hedberg, D. & Wallin, M. Effects of Roundup and glyphosate formulations on intracellular transport, microtubules and actin filaments in Xenopus laevis melanophores. Toxicol. In Vitro 24, 795–802. https://doi.org/10.1016/j.tiv.2009.12.020 (2010).
Google Scholar
Source: Ecology - nature.com