in

Roundup and glyphosate’s impact on GABA to elicit extended proconvulsant behavior in Caenorhabditis elegans

  • Zabalza, A., Orcaray, L., Fernandez-Escalada, M., Zulet-Gonzalez, A. & Royuela, M. The pattern of shikimate pathway and phenylpropanoids after inhibition by glyphosate or quinate feeding in pea roots. Pestic Biochem. Physiol. 141, 96–102. https://doi.org/10.1016/j.pestbp.2016.12.005 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Amrhein, N., Deus, B., Gehrke, P. & Steinrucken, H. C. The site of the inhibition of the shikimate pathway by glyphosate: II. Interference of glyphosate with chorismate formation in vivo and in vitro. Plant Physiol. 66, 830–834. https://doi.org/10.1104/pp.66.5.830 (1980).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Landrigan, P. J. & Belpoggi, F. The need for independent research on the health effects of glyphosate-based herbicides. Environ. Health 17, 51. https://doi.org/10.1186/s12940-018-0392-z (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tu, M. & Randall, J. Adjuvants. Tu, M. et al. Weed Control Methods Handbook the Nature Conservancy. 1–24. (TNC, 2003).

  • Brausch, J. M. & Smith, P. N. Toxicity of three polyethoxylated tallowamine surfactant formulations to laboratory and field collected fairy shrimp, Thamnocephalus platyurus. Arch. Environ. Contam. Toxicol. 52, 217–221. https://doi.org/10.1007/s00244-006-0151-y (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Brausch, J. M., Beall, B. & Smith, P. N. Acute and sub-lethal toxicity of three POEA surfactant formulations to Daphnia magna. Bull. Environ. Contam. Toxicol. 78, 510–514. https://doi.org/10.1007/s00128-007-9091-0 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Tsui, M. T. & Chu, L. M. Aquatic toxicity of glyphosate-based formulations: Comparison between different organisms and the effects of environmental factors. Chemosphere 52, 1189–1197. https://doi.org/10.1016/S0045-6535(03)00306-0 (2003).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Adam, A., Marzuki, A., Abdul Rahman, H. & Abdul Aziz, M. The oral and intratracheal toxicities of ROUNDUP and its components to rats. Vet. Hum. Toxicol. 39, 147–151 (1997).

    CAS 
    PubMed 

    Google Scholar 

  • Howe, C. M. et al. Toxicity of glyphosate-based pesticides to four North American frog species. Environ. Toxicol. Chem. 23, 1928–1938. https://doi.org/10.1897/03-71 (2004).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Mesnage, R., Benbrook, C. & Antoniou, M. N. Insight into the confusion over surfactant co-formulants in glyphosate-based herbicides. Food Chem. Toxicol. 128, 137–145. https://doi.org/10.1016/j.fct.2019.03.053 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Mesnage, R., Bernay, B. & Seralini, G. E. Ethoxylated adjuvants of glyphosate-based herbicides are active principles of human cell toxicity. Toxicology 313, 122–128. https://doi.org/10.1016/j.tox.2012.09.006 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Chlopecka, M., Mendel, M., Dziekan, N. & Karlik, W. The effect of glyphosate-based herbicide Roundup and its co-formulant, POEA, on the motoric activity of rat intestine—In vitro study. Environ. Toxicol. Pharmacol. 49, 156–162. https://doi.org/10.1016/j.etap.2016.12.010 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Authority, E. F. S. Request for the evaluation of the toxicological assessment of the co-formulant POE-tallowamine. EFSA J. 13, 4303 (2015).

    Google Scholar 

  • Bolognesi, C. et al. Genotoxic activity of glyphosate and its technical formulation Roundup. J. Agric. Food Chem. 45, 1957–1962 (1997).

    CAS 
    Article 

    Google Scholar 

  • Hao, Y. et al. Roundup((R)) confers cytotoxicity through DNA damage and mitochondria-associated apoptosis induction. Environ. Pollut. 252, 917–923. https://doi.org/10.1016/j.envpol.2019.05.128 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Luo, L. et al. In vitro cytotoxicity assessment of roundup (glyphosate) in L-02 hepatocytes. J. Environ. Sci. Health B 52, 410–417. https://doi.org/10.1080/03601234.2017.1293449 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Young, F., Ho, D., Glynn, D. & Edwards, V. Endocrine disruption and cytotoxicity of glyphosate and roundup in human JAr cells in vitro. Synthesis 14, 17 (2015).

    Google Scholar 

  • Weinhold, B. Mystery in a bottle: Will the EPA require public disclosure of inert pesticide ingredients?. Environ. Health Perspect. 118, A168-171. https://doi.org/10.1289/ehp.118-a168 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Richmond, M. E. Glyphosate: A review of its global use, environmental impact, and potential health effects on humans and other species. J. Environ. Stud. Sci. 8, 416–434 (2018).

    Article 

    Google Scholar 

  • Cole, R. D., Anderson, G. L. & Williams, P. L. The nematode Caenorhabditis elegans as a model of organophosphate-induced mammalian neurotoxicity. Toxicol. Appl. Pharmacol. 194, 248–256. https://doi.org/10.1016/j.taap.2003.09.013 (2004).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Lai, C. H., Chou, C. Y., Ch’ang, L. Y., Liu, C. S. & Lin, W. Identification of novel human genes evolutionarily conserved in Caenorhabditis elegans by comparative proteomics. Genome Res. 10, 703–713. https://doi.org/10.1101/gr.10.5.703 (2000).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Negga, R. et al. Exposure to glyphosate- and/or Mn/Zn-ethylene-bis-dithiocarbamate-containing pesticides leads to degeneration of gamma-aminobutyric acid and dopamine neurons in Caenorhabditis elegans. Neurotox. Res. 21, 281–290. https://doi.org/10.1007/s12640-011-9274-7 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Negga, R. et al. Exposure to Mn/Zn ethylene-bis-dithiocarbamate and glyphosate pesticides leads to neurodegeneration in Caenorhabditis elegans. Neurotoxicology 32, 331–341. https://doi.org/10.1016/j.neuro.2011.02.002 (2011).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schuske, K., Beg, A. A. & Jorgensen, E. M. The GABA nervous system in C. elegans. Trends Neurosci. 27, 407–414. https://doi.org/10.1016/j.tins.2004.05.005 (2004).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • McIntire, S. L., Jorgensen, E. & Horvitz, H. R. Genes required for GABA function in Caenorhabditis elegans. Nature 364, 334–337. https://doi.org/10.1038/364334a0 (1993).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Eastman, C., Horvitz, H. R. & Jin, Y. Coordinated transcriptional regulation of the unc-25 glutamic acid decarboxylase and the unc-47 GABA vesicular transporter by the Caenorhabditis elegans UNC-30 homeodomain protein. J. Neurosci. 19, 6225–6234 (1999).

    CAS 
    Article 

    Google Scholar 

  • Bamber, B. A., Beg, A. A., Twyman, R. E. & Jorgensen, E. M. The Caenorhabditis elegans unc-49 locus encodes multiple subunits of a heteromultimeric GABA receptor. J. Neurosci. 19, 5348–5359 (1999).

    CAS 
    Article 

    Google Scholar 

  • Risley, M. G., Kelly, S. P., Jia, K., Grill, B. & Dawson-Scully, K. Modulating behavior in C. elegans using electroshock and antiepileptic drugs. PLoS ONE 11, e0163786. https://doi.org/10.1371/journal.pone.0163786 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pandey, R. et al. Baccoside A suppresses epileptic-like seizure/convulsion in Caenorhabditis elegans. Seizure 19, 439–442. https://doi.org/10.1016/j.seizure.2010.06.005 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Risley, M. G., Kelly, S. P. & Dawson-Scully, K. Electroshock induced seizures in adult C. elegans. Bio-Protoc. 7, 163786 (2017).

    Article 

    Google Scholar 

  • Risley, M. G., Kelly, S. P., Minnerly, J., Jia, K. & Dawson-Scully, K. egl-4 modulates electroconvulsive seizure duration in C. elegans. Invert. Neurosci. 18, 8. https://doi.org/10.1007/s10158-018-0211-9 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McVey, K. A. et al. Exposure of C. elegans eggs to a glyphosate-containing herbicide leads to abnormal neuronal morphology. Neurotoxicol. Teratol. 55, 23–31. https://doi.org/10.1016/j.ntt.2016.03.002 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Burchfield, S. L. et al. Acute exposure to a glyphosate-containing herbicide formulation inhibits Complex II and increases hydrogen peroxide in the model organism Caenorhabditis elegans. Environ. Toxicol. Pharmacol. 66, 36–42. https://doi.org/10.1016/j.etap.2018.12.019 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Weisskopf, M. G., Moisan, F., Tzourio, C., Rathouz, P. J. & Elbaz, A. Pesticide exposure and depression among agricultural workers in France. Am. J. Epidemiol. 178, 1051–1058. https://doi.org/10.1093/aje/kwt089 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Kamel, F. et al. Pesticide exposure and self-reported Parkinson’s disease in the agricultural health study. Am. J. Epidemiol. 165, 364–374. https://doi.org/10.1093/aje/kwk024 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Tanner, C. M. Advances in environmental epidemiology. Mov. Disord. 25(Suppl 1), S58-62. https://doi.org/10.1002/mds.22721 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Dick, F. D. Parkinson’s disease and pesticide exposures. Br. Med. Bull. 79–80, 219–231. https://doi.org/10.1093/bmb/ldl018 (2006).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Brown, T. P., Rumsby, P. C., Capleton, A. C., Rushton, L. & Levy, L. S. Pesticides and Parkinson’s disease–Is there a link?. Environ. Health Perspect. 114, 156–164. https://doi.org/10.1289/ehp.8095 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Firestone, J. A. et al. Pesticides and risk of Parkinson disease: A population-based case-control study. Arch. Neurol. 62, 91–95. https://doi.org/10.1001/archneur.62.1.91 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Martinez, M. A. et al. Neurotransmitter changes in rat brain regions following glyphosate exposure. Environ. Res. 161, 212–219. https://doi.org/10.1016/j.envres.2017.10.051 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Kalueff, A. V. & Nutt, D. J. Role of GABA in anxiety and depression. Depress. Anxiety 24, 495–517. https://doi.org/10.1002/da.20262 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Mohler, H. The GABA system in anxiety and depression and its therapeutic potential. Neuropharmacology 62, 42–53. https://doi.org/10.1016/j.neuropharm.2011.08.040 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Brambilla, P., Perez, J., Barale, F., Schettini, G. & Soares, J. C. GABAergic dysfunction in mood disorders. Mol. Psychiatry 8, 721–737. https://doi.org/10.1038/sj.mp.4001362 (2003) (715).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Xia, G. et al. Reciprocal control of obesity and anxiety-depressive disorder via a GABA and serotonin neural circuit. Mol. Psychiatry 26, 2837–2853. https://doi.org/10.1038/s41380-021-01053-w (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Martinez, A. & Al-Ahmad, A. J. Effects of glyphosate and aminomethylphosphonic acid on an isogeneic model of the human blood-brain barrier. Toxicol. Lett. 304, 39–49. https://doi.org/10.1016/j.toxlet.2018.12.013 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Goetz, T., Arslan, A., Wisden, W. & Wulff, P. GABA(A) receptors: Structure and function in the basal ganglia. Prog. Brain Res. 160, 21–41. https://doi.org/10.1016/S0079-6123(06)60003-4 (2007).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shaw, W. Elevated urinary glyphosate and clostridia metabolites with altered dopamine metabolism in triplets with autistic spectrum disorder or suspected seizure disorder: A case study. Integr. Med. (Encinitas) 16, 50–57 (2017).

    Google Scholar 

  • Gaupp-Berghausen, M., Hofer, M., Rewald, B. & Zaller, J. G. Glyphosate-based herbicides reduce the activity and reproduction of earthworms and lead to increased soil nutrient concentrations. Sci. Rep. 5, 12886. https://doi.org/10.1038/srep12886 (2015).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kanabar, M. et al. Roundup negatively impacts the behavior and nerve function of the Madagascar hissing cockroach (Gromphadorhina portentosa). Environ. Sci. Pollut. Res. Int. https://doi.org/10.1007/s11356-021-13021-6 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Loscher, W., Fassbender, C. P. & Nolting, B. The role of technical, biological and pharmacological factors in the laboratory evaluation of anticonvulsant drugs. II. Maximal electroshock seizure models. Epilepsy Res. 8, 79–94. https://doi.org/10.1016/0920-1211(91)90075-q (1991).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Castel-Branco, M. M., Alves, G. L., Figueiredo, I. V., Falcao, A. C. & Caramona, M. M. The maximal electroshock seizure (MES) model in the preclinical assessment of potential new antiepileptic drugs. Methods Find. Exp. Clin. Pharmacol. 31, 101–106. https://doi.org/10.1358/mf.2009.31.2.1338414 (2009).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Luszczki, J. J. et al. Anticonvulsant and acute neurotoxic effects of imperatorin, osthole and valproate in the maximal electroshock seizure and chimney tests in mice: A comparative study. Epilepsy Res. 85, 293–299. https://doi.org/10.1016/j.eplepsyres.2009.03.027 (2009).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Suthakaran, N. et al. O-GlcNAc transferase OGT-1 and the ubiquitin ligase EEL-1 modulate seizure susceptibility in C. elegans. PLoS ONE 16, e0260072. https://doi.org/10.1371/journal.pone.0260072 (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hedberg, D. & Wallin, M. Effects of Roundup and glyphosate formulations on intracellular transport, microtubules and actin filaments in Xenopus laevis melanophores. Toxicol. In Vitro 24, 795–802. https://doi.org/10.1016/j.tiv.2009.12.020 (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    Using seismology for groundwater management

    Bridging careers in aerospace manufacturing and fusion energy, with a focus on intentional inclusion