in

Rush or relax: migration tactics of a nocturnal insectivore in response to ecological barriers

  • Alves, J. A. et al. Costs, benefits, and fitness consequences of different migratory strategies. Ecology 94(1), 11–17 (2013).

    PubMed 

    Google Scholar 

  • Alexander, R. M. When is migration worthwhile for animals that walk, swim or fly?. J. Avian Biol. 29(4), 387–394 (1998).

    Google Scholar 

  • Wikelski, M. et al. Costs of migration in free-flying songbirds. Nature 423, 704 (2003).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Alerstam, T., Hedenström, A. & Åkesson, S. Long-distance migration: evolution and determinants. Oikos 103(2), 247–260 (2003).

    Google Scholar 

  • Alerstam, T. Optimal bird migration revisited. J. Ornithol. 152, 5–23 (2011).

    Google Scholar 

  • Hedenstrom, A. & Alerstam, T. Optimum fuel loads in migratory birds: Distinguishing between time and energy minimization. J. Theor. Biol. 189, 227–234 (1997).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Åkesson, S. & Helm, B. Endogenous programs and flexibility in bird migration. Front. Ecol. Evol. 8, 78 (2020).

    Google Scholar 

  • Jiguet, F. et al. Desert crossing strategies of migrant songbirds vary between and within species. Sci. Rep. 9(1), 20248 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Senner, N. R., Morbey, Y. E. & Sandercock, B. K. Editorial: Flexibility in the migration strategies of animals. Front. Ecol. Evol. 8, 111 (2020).

    Google Scholar 

  • Mellone, U., López-López, P., Limiñana, R., Piasevoli, G. & Urios, V. The trans-equatorial loop migration system of Eleonora’s falcon: Differences in migration patterns between age classes, regions and seasons. J. Avian Biol. 44, 417–426 (2013).

    Google Scholar 

  • Chevallier, D. et al. Influence of weather conditions on the flight of migrating black storks. Proc. Biol. Sci. 277(1695), 2755–2764 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Verhelst, B., Jansen, J. & Vansteelant, W. South West Georgia: An important bottleneck for raptor migration during autumn. Ardea 99, 137–146 (2011).

    Google Scholar 

  • Klaassen, R. H. G., Strandberg, R., Hake, M. & Alerstam, T. Flexibility in daily travel routines causes regional variation in bird migration speed. Behav. Ecol. Sociobiol. 62(9), 1427–1432 (2008).

    Google Scholar 

  • Alerstam, T. Detours in bird migration. J. Theor. Biol. 209(3), 319–331 (2001).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Alerstam, T. & Hedenström, A. The development of bird migration theory. J. Avian Biol. 29(4), 343–369 (1998).

    Google Scholar 

  • Liechti, F., Klaassen, M. & Bruderer, B. Predicting migratory flight altitudes by physiological migration models. Auk 117, 205–214 (2000).

    Google Scholar 

  • Senner, N. R. et al. High-altitude shorebird migration in the absence of topographical barriers: Avoiding high air temperatures and searching for profitable winds. Proc. Biol. Sci. 2018, 285 (1881).

    Google Scholar 

  • Norevik, G., Akesson, S., Andersson, A., Backman, J. & Hedenstrom, A. Flight altitude dynamics of migrating European nightjars across regions and seasons. J. Exp. Biol. 224(20), jeb242836 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hadjikyriakou, T. G., Nwankwo, E. C., Virani, M. Z. & Kirschel, A. N. G. Habitat availability influences migration speed, refueling patterns and seasonal flyways of a fly-and-forage migrant. Mov. Ecol. 8, 10 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Strandberg, R., Klaassen, R. H. G., Olofsson, P. & Alerstam, T. Daily travel schedules of adult Eurasian Hobbies Falco subbuteo—Variability in flight hours and migration speed along the route. Ardea 97(3), 287–295 (2009).

    Google Scholar 

  • Strandberg, R. & Alerstam, T. The strategy of fly-and-forage migration, illustrated for the osprey (Pandion haliaetus). Behav. Ecol. Sociobiol. 61(12), 1865–1875 (2007).

    Google Scholar 

  • McKinnon, E. A. & Love, O. P. Ten years tracking the migrations of small landbirds: Lessons learned in the golden age of bio-logging. Auk 135(4), 834–856 (2018).

    Google Scholar 

  • Backman, J. et al. Actogram analysis of free-flying migratory birds: New perspectives based on acceleration logging. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 203(6–7), 543–564 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Evens, R., Beenaerts, N., Witters, N. & Artois, T. Study on the foraging behaviour of the European nightjar Caprimulgus europaeus reveals the need for a change in conservation strategy in Belgium. J. Avian Biol. 48(9), 1238–1245 (2017).

    Google Scholar 

  • Evens, R. et al. Lunar synchronization of daily activity patterns in a crepuscular avian insectivore. Ecol. Evol. 10(14), 7106–7116 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Liechti, F. et al. Miniaturized multi-sensor loggers provide new insight into year-round flight behaviour of small trans-Sahara avian migrants. Mov. Ecol. 6, 19 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Liechti, F., Witvliet, W., Weber, R. & Bachler, E. First evidence of a 200-day non-stop flight in a bird. Nat. Commun. 4, 2554 (2013).

    ADS 
    PubMed 

    Google Scholar 

  • Dhanjal-Adams, K. L. PAMLr: Suite of functions for manipulating pressure, activity, magnetism and light data in R. (2020).

  • Lisovski, S. et al. Light-level geolocator analyses: A user’s guide. J. Anim. Ecol. 89(1), 221–236 (2020).

    PubMed 

    Google Scholar 

  • Lisovski, S. et al. Geolocation by light: Accuracy and precision affected by environmental factors. Methods Ecol. Evol. 3(3), 603–612 (2012).

    Google Scholar 

  • Wotherspoon, S., Sumner, M., Lisovski, S. SGAT-Package: Solar/Satellite Geolocation for Animal Tracking. (2021). R package version 0.1.3. GitHub Repository.

  • Bauer, R. RchivalTag: Analyzing Archival Tagging Data. R package version 0.1.2. (2020).

  • Sjöberg, S. et al. Barometer logging reveals new dimensions of individual songbird migration. J. Avian Biol. 49(9), e01821 (2018).

    Google Scholar 

  • Evens, R. et al. Migratory pathways, stopover zones and wintering destinations of Western European Nightjars Caprimulgus europaeus. Ibis 159(3), 680–686 (2017).

    Google Scholar 

  • Becker, J. J. et al. Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS. Mar. Geodesy 32(4), 355–371 (2009).

    Google Scholar 

  • Ricketts, T. H. Terrestrial Ecoregions of North America: A Conservation Assessment (Island Press, 1999).

    Google Scholar 

  • Olson, D. M. et al. Terrestrial ecoregions of the world: A new map of life on earth. Bioscience 51(11), 933–938 (2001).

    Google Scholar 

  • QGIS-Development-Team: QGIS Geographic Information System. Open Source Geospatial Foundation (2021).

  • Vansteelant, W. M. G., Gangoso, L., Bouten, W., Viana, D. S. & Figuerola, J. Adaptive drift and barrier-avoidance by a fly-forage migrant along a climate-driven flyway. Mov. Ecol. 9(1), 37 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9(2), 378–400 (2017).

    Google Scholar 

  • Hartig, F. DHARMa: Residual Diagnostics for Hierarchical Multi-Level/Mixed) Regression Models. R package version 0.3.3.0. (2020).

  • Lenth, R. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.5.1. (2020).

  • Akesson, S., Bianco, G. & Hedenstrom, A. Negotiating an ecological barrier: Crossing the Sahara in relation to winds by common swifts. Philos. Trans. R. Soc. Lond. B Biol. Sci. 371(1704), 20150393 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Strandberg, R., Klaassen, R. H. G., Hake, M., Olofsson, P. & Alerstam, T. Converging migration routes of Eurasian Hobbies Falco subbuteo crossing the African equatorial rain forest. Proc. R. Soc. B 276, 727–733 (2009).

    PubMed 

    Google Scholar 

  • Rodriguez-Ruiz, J. et al. Disentangling migratory routes and wintering grounds of Iberian near-threatened European Rollers Coracias garrulus. PLoS ONE 9(12), e115615 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vickery, J. A. et al. The decline of Afro-Palaearctic migrants and an assessment of potential causes. Ibis 156, 1–22 (2014).

    Google Scholar 

  • Evens, R. et al. Proximity of breeding and foraging areas affects foraging effort of a crepuscular, insectivorous bird. Sci. Rep. 8(1), 3008 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Conring, C. M., Brautigam, K., Grisham, B. A., Collins, D. P. & Conway, W. C. Identifying the migratory strategy of the Lower Colorado River Valley population of Greater Sandhill Cranes. Avian Conserv. Ecol. 14(1), 11 (2019).

    Google Scholar 

  • Imlay, T. L., Saldanha, S. & Taylor, P. D. The fall migratory movements of Bank Swallows, Riparia riparia: Fly-and-forage migration?. Avian Conserv. Ecol. 15(1), 2 (2020).

    Google Scholar 

  • Piersma, T. Hop, skip, or jump? Constraints on migration of arctic waders by feeding, fattening, and flight speed. Limosa 60, 185–194 (1987).

    Google Scholar 

  • Warnock, N. Stopping vs. staging: The difference between a hop and a jump. J. Avian Biol. 41(6), 621–626 (2010).

    Google Scholar 

  • Gomez, C. et al. Fuel loads acquired at a stopover site influence the pace of intercontinental migration in a boreal songbird. Sci. Rep. 7(1), 3405 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tottrup, A. P. et al. The annual cycle of a trans-equatorial Eurasian-African passerine migrant: different spatio-temporal strategies for autumn and spring migration. Proc. Biol. Sci. 279(1730), 1008–1016 (2012).

    PubMed 

    Google Scholar 

  • Lisovski, S. et al. Inherent limits of light-level geolocation may lead to over-interpretation. Curr. Biol. 28(3), R99–R100 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Buler, J. J., Moore, F. R. & Woltmann, S. A multi-scale examination of stopover habitat use by birds. Ecology 88(7), 1789–1802 (2007).

    PubMed 

    Google Scholar 

  • Loon, A. V. et al. Migratory stopover timing is predicted by breeding latitude, not habitat quality, in a long-distance migratory songbird. J. Ornithol. 158(3), 745–752 (2017).

    Google Scholar 

  • Norevik, G. et al. Wind-associated detours promote seasonal migratory connectivity in a flapping flying long-distance avian migrant. J. Anim. Ecol. 89(2), 635–646 (2020).

    PubMed 

    Google Scholar 

  • Norevik, G., Åkesson, S. & Hedenström, A. Migration strategies and annual space-use in an Afro-Palaearctic aerial insectivore—The European nightjar Caprimulgus europaeus. J. Avian Biol. 48(5), 738–747 (2017).

    Google Scholar 

  • Cresswell, B. & Edwards, D. Geolocators reveal wintering areas of European Nightjar (Caprimulgus europaeus). Bird Study 60(1), 77–86 (2013).

    Google Scholar 

  • Jacobsen, L. B. et al. Annual spatiotemporal migration schedules in three larger insectivorous birds: European nightjar, common swift and common cuckoo. Anim. Biotelem. 5(1), 1–11 (2017).

    Google Scholar 

  • Liechti, F. & Bruderer, B. The relevance of wind for optimal migration theory. J. Avian Biol. 29(4), 561–568 (1998).

    Google Scholar 

  • Schmaljohann, H., Bruderer, B. & Liechti, F. Sustained bird flights occur at temperatures far beyond expected limits. Anim. Behav. 76(4), 1133–1138 (2008).

    Google Scholar 

  • Schmaljohann, H., Liechti, F. & Bruderer, B. Trans-Sahara migrants select flight altitudes to minimize energy costs rather than water loss. Behav. Ecol. Sociobiol. 63(11), 1609–1619 (2009).

    Google Scholar 

  • Sjöberg, S. et al. Extreme altitudes during diurnal flights in a nocturnal songbird migrant. Science 372, 646–648 (2021).

    ADS 
    PubMed 

    Google Scholar 

  • Bruderer, B., Peter, D. & Korner-Nievergelt, F. Vertical distribution of bird migration between the Baltic Sea and the Sahara. J. Ornithol. 159(2), 315–336 (2018).

    Google Scholar 


  • Source: Ecology - nature.com

    Q&A: Bettina Stoetzer on envisioning a livable future

    Antennae of psychodid and sphaerocerid flies respond to a high variety of floral scent compounds of deceptive Arum maculatum L.