Alves, J. A. et al. Costs, benefits, and fitness consequences of different migratory strategies. Ecology 94(1), 11–17 (2013).
Google Scholar
Alexander, R. M. When is migration worthwhile for animals that walk, swim or fly?. J. Avian Biol. 29(4), 387–394 (1998).
Wikelski, M. et al. Costs of migration in free-flying songbirds. Nature 423, 704 (2003).
Google Scholar
Alerstam, T., Hedenström, A. & Åkesson, S. Long-distance migration: evolution and determinants. Oikos 103(2), 247–260 (2003).
Alerstam, T. Optimal bird migration revisited. J. Ornithol. 152, 5–23 (2011).
Hedenstrom, A. & Alerstam, T. Optimum fuel loads in migratory birds: Distinguishing between time and energy minimization. J. Theor. Biol. 189, 227–234 (1997).
Google Scholar
Åkesson, S. & Helm, B. Endogenous programs and flexibility in bird migration. Front. Ecol. Evol. 8, 78 (2020).
Jiguet, F. et al. Desert crossing strategies of migrant songbirds vary between and within species. Sci. Rep. 9(1), 20248 (2019).
Google Scholar
Senner, N. R., Morbey, Y. E. & Sandercock, B. K. Editorial: Flexibility in the migration strategies of animals. Front. Ecol. Evol. 8, 111 (2020).
Mellone, U., López-López, P., Limiñana, R., Piasevoli, G. & Urios, V. The trans-equatorial loop migration system of Eleonora’s falcon: Differences in migration patterns between age classes, regions and seasons. J. Avian Biol. 44, 417–426 (2013).
Chevallier, D. et al. Influence of weather conditions on the flight of migrating black storks. Proc. Biol. Sci. 277(1695), 2755–2764 (2010).
Google Scholar
Verhelst, B., Jansen, J. & Vansteelant, W. South West Georgia: An important bottleneck for raptor migration during autumn. Ardea 99, 137–146 (2011).
Klaassen, R. H. G., Strandberg, R., Hake, M. & Alerstam, T. Flexibility in daily travel routines causes regional variation in bird migration speed. Behav. Ecol. Sociobiol. 62(9), 1427–1432 (2008).
Alerstam, T. Detours in bird migration. J. Theor. Biol. 209(3), 319–331 (2001).
Google Scholar
Alerstam, T. & Hedenström, A. The development of bird migration theory. J. Avian Biol. 29(4), 343–369 (1998).
Liechti, F., Klaassen, M. & Bruderer, B. Predicting migratory flight altitudes by physiological migration models. Auk 117, 205–214 (2000).
Senner, N. R. et al. High-altitude shorebird migration in the absence of topographical barriers: Avoiding high air temperatures and searching for profitable winds. Proc. Biol. Sci. 2018, 285 (1881).
Norevik, G., Akesson, S., Andersson, A., Backman, J. & Hedenstrom, A. Flight altitude dynamics of migrating European nightjars across regions and seasons. J. Exp. Biol. 224(20), jeb242836 (2021).
Google Scholar
Hadjikyriakou, T. G., Nwankwo, E. C., Virani, M. Z. & Kirschel, A. N. G. Habitat availability influences migration speed, refueling patterns and seasonal flyways of a fly-and-forage migrant. Mov. Ecol. 8, 10 (2020).
Google Scholar
Strandberg, R., Klaassen, R. H. G., Olofsson, P. & Alerstam, T. Daily travel schedules of adult Eurasian Hobbies Falco subbuteo—Variability in flight hours and migration speed along the route. Ardea 97(3), 287–295 (2009).
Strandberg, R. & Alerstam, T. The strategy of fly-and-forage migration, illustrated for the osprey (Pandion haliaetus). Behav. Ecol. Sociobiol. 61(12), 1865–1875 (2007).
McKinnon, E. A. & Love, O. P. Ten years tracking the migrations of small landbirds: Lessons learned in the golden age of bio-logging. Auk 135(4), 834–856 (2018).
Backman, J. et al. Actogram analysis of free-flying migratory birds: New perspectives based on acceleration logging. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 203(6–7), 543–564 (2017).
Google Scholar
Evens, R., Beenaerts, N., Witters, N. & Artois, T. Study on the foraging behaviour of the European nightjar Caprimulgus europaeus reveals the need for a change in conservation strategy in Belgium. J. Avian Biol. 48(9), 1238–1245 (2017).
Evens, R. et al. Lunar synchronization of daily activity patterns in a crepuscular avian insectivore. Ecol. Evol. 10(14), 7106–7116 (2020).
Google Scholar
Liechti, F. et al. Miniaturized multi-sensor loggers provide new insight into year-round flight behaviour of small trans-Sahara avian migrants. Mov. Ecol. 6, 19 (2018).
Google Scholar
Liechti, F., Witvliet, W., Weber, R. & Bachler, E. First evidence of a 200-day non-stop flight in a bird. Nat. Commun. 4, 2554 (2013).
Google Scholar
Dhanjal-Adams, K. L. PAMLr: Suite of functions for manipulating pressure, activity, magnetism and light data in R. (2020).
Lisovski, S. et al. Light-level geolocator analyses: A user’s guide. J. Anim. Ecol. 89(1), 221–236 (2020).
Google Scholar
Lisovski, S. et al. Geolocation by light: Accuracy and precision affected by environmental factors. Methods Ecol. Evol. 3(3), 603–612 (2012).
Wotherspoon, S., Sumner, M., Lisovski, S. SGAT-Package: Solar/Satellite Geolocation for Animal Tracking. (2021). R package version 0.1.3. GitHub Repository.
Bauer, R. RchivalTag: Analyzing Archival Tagging Data. R package version 0.1.2. (2020).
Sjöberg, S. et al. Barometer logging reveals new dimensions of individual songbird migration. J. Avian Biol. 49(9), e01821 (2018).
Evens, R. et al. Migratory pathways, stopover zones and wintering destinations of Western European Nightjars Caprimulgus europaeus. Ibis 159(3), 680–686 (2017).
Becker, J. J. et al. Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS. Mar. Geodesy 32(4), 355–371 (2009).
Ricketts, T. H. Terrestrial Ecoregions of North America: A Conservation Assessment (Island Press, 1999).
Olson, D. M. et al. Terrestrial ecoregions of the world: A new map of life on earth. Bioscience 51(11), 933–938 (2001).
QGIS-Development-Team: QGIS Geographic Information System. Open Source Geospatial Foundation (2021).
Vansteelant, W. M. G., Gangoso, L., Bouten, W., Viana, D. S. & Figuerola, J. Adaptive drift and barrier-avoidance by a fly-forage migrant along a climate-driven flyway. Mov. Ecol. 9(1), 37 (2021).
Google Scholar
Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9(2), 378–400 (2017).
Hartig, F. DHARMa: Residual Diagnostics for Hierarchical Multi-Level/Mixed) Regression Models. R package version 0.3.3.0. (2020).
Lenth, R. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.5.1. (2020).
Akesson, S., Bianco, G. & Hedenstrom, A. Negotiating an ecological barrier: Crossing the Sahara in relation to winds by common swifts. Philos. Trans. R. Soc. Lond. B Biol. Sci. 371(1704), 20150393 (2016).
Google Scholar
Strandberg, R., Klaassen, R. H. G., Hake, M., Olofsson, P. & Alerstam, T. Converging migration routes of Eurasian Hobbies Falco subbuteo crossing the African equatorial rain forest. Proc. R. Soc. B 276, 727–733 (2009).
Google Scholar
Rodriguez-Ruiz, J. et al. Disentangling migratory routes and wintering grounds of Iberian near-threatened European Rollers Coracias garrulus. PLoS ONE 9(12), e115615 (2014).
Google Scholar
Vickery, J. A. et al. The decline of Afro-Palaearctic migrants and an assessment of potential causes. Ibis 156, 1–22 (2014).
Evens, R. et al. Proximity of breeding and foraging areas affects foraging effort of a crepuscular, insectivorous bird. Sci. Rep. 8(1), 3008 (2018).
Google Scholar
Conring, C. M., Brautigam, K., Grisham, B. A., Collins, D. P. & Conway, W. C. Identifying the migratory strategy of the Lower Colorado River Valley population of Greater Sandhill Cranes. Avian Conserv. Ecol. 14(1), 11 (2019).
Imlay, T. L., Saldanha, S. & Taylor, P. D. The fall migratory movements of Bank Swallows, Riparia riparia: Fly-and-forage migration?. Avian Conserv. Ecol. 15(1), 2 (2020).
Piersma, T. Hop, skip, or jump? Constraints on migration of arctic waders by feeding, fattening, and flight speed. Limosa 60, 185–194 (1987).
Warnock, N. Stopping vs. staging: The difference between a hop and a jump. J. Avian Biol. 41(6), 621–626 (2010).
Gomez, C. et al. Fuel loads acquired at a stopover site influence the pace of intercontinental migration in a boreal songbird. Sci. Rep. 7(1), 3405 (2017).
Google Scholar
Tottrup, A. P. et al. The annual cycle of a trans-equatorial Eurasian-African passerine migrant: different spatio-temporal strategies for autumn and spring migration. Proc. Biol. Sci. 279(1730), 1008–1016 (2012).
Google Scholar
Lisovski, S. et al. Inherent limits of light-level geolocation may lead to over-interpretation. Curr. Biol. 28(3), R99–R100 (2018).
Google Scholar
Buler, J. J., Moore, F. R. & Woltmann, S. A multi-scale examination of stopover habitat use by birds. Ecology 88(7), 1789–1802 (2007).
Google Scholar
Loon, A. V. et al. Migratory stopover timing is predicted by breeding latitude, not habitat quality, in a long-distance migratory songbird. J. Ornithol. 158(3), 745–752 (2017).
Norevik, G. et al. Wind-associated detours promote seasonal migratory connectivity in a flapping flying long-distance avian migrant. J. Anim. Ecol. 89(2), 635–646 (2020).
Google Scholar
Norevik, G., Åkesson, S. & Hedenström, A. Migration strategies and annual space-use in an Afro-Palaearctic aerial insectivore—The European nightjar Caprimulgus europaeus. J. Avian Biol. 48(5), 738–747 (2017).
Cresswell, B. & Edwards, D. Geolocators reveal wintering areas of European Nightjar (Caprimulgus europaeus). Bird Study 60(1), 77–86 (2013).
Jacobsen, L. B. et al. Annual spatiotemporal migration schedules in three larger insectivorous birds: European nightjar, common swift and common cuckoo. Anim. Biotelem. 5(1), 1–11 (2017).
Liechti, F. & Bruderer, B. The relevance of wind for optimal migration theory. J. Avian Biol. 29(4), 561–568 (1998).
Schmaljohann, H., Bruderer, B. & Liechti, F. Sustained bird flights occur at temperatures far beyond expected limits. Anim. Behav. 76(4), 1133–1138 (2008).
Schmaljohann, H., Liechti, F. & Bruderer, B. Trans-Sahara migrants select flight altitudes to minimize energy costs rather than water loss. Behav. Ecol. Sociobiol. 63(11), 1609–1619 (2009).
Sjöberg, S. et al. Extreme altitudes during diurnal flights in a nocturnal songbird migrant. Science 372, 646–648 (2021).
Google Scholar
Bruderer, B., Peter, D. & Korner-Nievergelt, F. Vertical distribution of bird migration between the Baltic Sea and the Sahara. J. Ornithol. 159(2), 315–336 (2018).
Source: Ecology - nature.com