Burke, L., Reytar, K., Spalding, M. & Perry, A. Reefs at Risk Revisited (World Resource Institute, 2011).
Bell, J. D. et al. Planning the use of fish for food security in the Pacific. Mar. Policy 33, 64–76 (2009).
Google Scholar
Gillett, R. Fisheries in the Economies of the Pacific Island Countries and Territories (Asian Development Bank, 2016).
The Regional State of the Coast Report: Western Indian Ocean (UNEP, Nairobi Convention & WIOMSA, 2015).
Wabnitz, C. C. C., Cisneros-Montemayor, A. M., Hanich, Q. & Ota, Y. Ecotourism, climate change and reef fish consumption in Palau: benefits, trade-offs and adaptation strategies. Mar. Policy 88, 323–332 (2018).
Google Scholar
Cinner, J. E. et al. Building adaptive capacity to climate change in tropical coastal communities. Nat. Clim. Change 8, 117–123 (2018).
Google Scholar
Thilsted, S. H. et al. Sustaining healthy diets: the role of capture fisheries and aquaculture for improving nutrition in the post-2015 era. Food Policy 61, 126–131 (2016).
Google Scholar
Beal, T., Massiot, E., Arsenault, J. E., Smith, M. R. & Hijmans, R. J. Global trends in dietary micronutrient supplies and estimated prevalence of inadequate intakes. PLoS ONE 12, e0175554 (2017).
Google Scholar
Calder, P. C. Marine omega-3 fatty acids and inflammatory processes: effects, mechanisms and clinical relevance. Biochim. Biophys. Acta 1851, 469–484 (2015).
Google Scholar
Haddad, L. et al. A new global research agenda for food. Nature 540, 30–32 (2016).
Google Scholar
Golden, C. D. et al. Aquatic foods to nourish nations. Nature 598, 315–320 (2021).
Google Scholar
MacNeil, M. et al. Recovery potential of the world’s coral reef fishes. Nature 520, 341–344 (2015).
Google Scholar
Graham, N. A. J., Jennings, S., MacNeil, M. A., Mouillot, D. & Wilson, S. K. Predicting climate-driven regime shifts versus rebound potential in coral reefs. Nature 518, 94–97 (2015).
Google Scholar
Crona, B. I., Van Holt, T., Petersson, M., Daw, T. M. & Buchary, E. Using social–ecological syndromes to understand impacts of international seafood trade on small-scale fisheries. Glob. Environ. Change 35, 162–175 (2015).
Google Scholar
Okemwa, G. M., Kaunda-Arara, B., Kimani, E. N. & Ogutu, B. Catch composition and sustainability of the marine aquarium fishery in Kenya. Fish. Res. 183, 19–31 (2016).
Google Scholar
Cinner, J. E., Folke, C., Daw, T. & Hicks, C. C. Responding to change: using scenarios to understand how socioeconomic factors may influence amplifying or dampening exploitation feedbacks among Tanzanian fishers. Glob. Environ. Change 21, 7–12 (2011).
Google Scholar
Hicks, C. C., Graham, N. A. J., Maire, E. & Robinson, J. P. W. Secure local aquatic food systems in the face of declining coral reefs. One Earth 4, 1214–1216 (2021).
Google Scholar
Albert, J. et al. Malnutrition in rural Solomon Islands: an analysis of the problem and its drivers. Matern. Child Nutr. 16, e12921 (2020).
Google Scholar
Golden, C. D. et al. Social–ecological traps link food systems to nutritional outcomes. Glob. Food Security 30, 100561 (2021).
Google Scholar
Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312 (2019).
Google Scholar
Robinson, J. P. W., Wilson, S. K., Jennings, S. & Graham, N. A. J. Thermal stress induces persistently altered coral reef fish assemblages. Glob. Change Biol. 25, 2739–2750 (2019).
Google Scholar
Robinson, J. P. W. et al. Productive instability of coral reef fisheries after climate-driven regime shifts. Nat. Ecol. Evol. 3, 183–190 (2019).
Google Scholar
Stuart-Smith, R. D., Brown, C. J., Ceccarelli, D. M. & Edgar, G. J. Ecosystem restructuring along the Great Barrier Reef following mass coral bleaching. Nature 560, 92–96 (2018).
Google Scholar
Morais, R. et al. Severe coral loss shifts energetic dynamics on a coral reef. Funct. Ecol. 34, 1507–1518 (2020).
Google Scholar
Robinson, J. P. W. et al. Habitat and fishing control grazing potential on coral reefs. Funct. Ecol. 34, 240–251 (2020).
Google Scholar
Fontoura, L. et al. Climate-driven shift in coral morphological structure predicts decline of juvenile reef fishes. Glob. Change Biol. 26, 557–567 (2020).
Google Scholar
Rogers, A., Blanchard, J. L. & Mumby, P. J. Fisheries productivity under progressive coral reef degradation. J. Appl. Ecol. 55, 1041–1049 (2018).
Google Scholar
Bates, A. E. et al. Climate resilience in marine protected areas and the ‘protection paradox’. Biol. Conserv. 236, 305–314 (2019).
Google Scholar
Darling, E. S. et al. Social–environmental drivers inform strategic management of coral reefs in the Anthropocene. Nat. Ecol. Evol. 3, 1341–1350 (2019).
Google Scholar
Soliño, L. & Costa, P. R. Global impact of ciguatoxins and ciguatera fish poisoning on fish, fisheries and consumers. Environ. Res. 182, 109111 (2020).
Google Scholar
Rogers, A. et al. Anticipative management for coral reef ecosystem services in the 21st century. Glob. Change Biol. 21, 504–514 (2015).
Google Scholar
Thiault, L. et al. Escaping the perfect storm of simultaneous climate change impacts on agriculture and marine fisheries. Sci. Adv. 5, eaaw9976 (2019).
Google Scholar
Souter, D. et al. Status of Coral Reefs of the World: 2020 (Global Coral Reef Monitoring Network & International Coral Reef Initiative, 2021).
Hicks, C. C. et al. Harnessing global fisheries to tackle micronutrient deficiencies. Nature 574, 95–98 (2019).
Google Scholar
Bierwagen, S. L., Heupel, M. R., Chin, A. & Simpfendorfer, C. A. Trophodynamics as a tool for understanding coral reef ecosystems. Front. Mar. Sci. 5, 24 (2018).
Google Scholar
Flombaum, P. et al. Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus. Proc. Natl Acad. Sci. USA 110, 9824–9829 (2013).
Google Scholar
Lehane, L. & Lewis, R. J. Ciguatera: recent advances but the risk remains. Int. J. Food Microbiol. 61, 91–125 (2000).
Google Scholar
Fraser, K. M. et al. Production of mobile invertebrate communities on shallow reefs from temperate to tropical seas. Proc. R. Soc. B Biol. Sci. 287, 20201798 (2020).
Google Scholar
Ullah, H., Nagelkerken, I., Goldenberg, S. U. & Fordham, D. A. Climate change could drive marine food web collapse through altered trophic flows and cyanobacterial proliferation. PLoS Biol. 16, e2003446 (2018).
Google Scholar
Kang, J. X. Omega-3: a link between global climate change and human health. Biotechnol. Adv. 29, 388–390 (2011).
Google Scholar
Hixson, S. M. & Arts, M. T. Climate warming is predicted to reduce omega-3, long-chain, polyunsaturated fatty acid production in phytoplankton. Glob. Change Biol. 22, 2744–2755 (2016).
Google Scholar
Tan, K., Zhang, H. & Zheng, H. Climate change and n-3 LC-PUFA availability. Prog. Lipid Res. 86, 101161 (2022).
Google Scholar
Pethybridge, H. R. et al. Spatial patterns and temperature predictions of tuna fatty acids: tracing essential nutrients and changes in primary producers. PLoS ONE 10, e0131598 (2015).
Google Scholar
Hempson, T. N., Graham, N. A. J., MacNeil, M. A., Bodin, N. & Wilson, S. K. Regime shifts shorten food chains for mesopredators with potential sublethal effects. Funct. Ecol. 32, 820–830 (2018).
Google Scholar
Bellwood, D. R., Hughes, T. & Hoey, A. S. Sleeping functional group drives coral-reef recovery. Curr. Biol. 16, 2434–2439 (2006).
Google Scholar
Sunday, J. M. et al. Species traits and climate velocity explain geographic range shifts in an ocean-warming hotspot. Ecol. Lett. 18, 944–953 (2015).
Google Scholar
Burrows, M. T. et al. Ocean community warming responses explained by thermal affinities and temperature gradients. Nat. Clim. Change 9, 959–963 (2019).
Google Scholar
Cheung, W. W., Watson, R. & Pauly, D. Signature of ocean warming in global fisheries catch. Nature 497, 365–368 (2013).
Google Scholar
Stuart-Smith, R. D., Mellin, C., Bates, A. E. & Edgar, G. Habitat loss and range shifts contribute to ecological generalization amongst reef fishes. Nat. Ecol. Evol. 5, 656–662 (2021).
Google Scholar
Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).
Google Scholar
Du Pontavice, H., Gascuel, D., Reygondeau, G., Maureaud, A. & Cheung, W. W. L. Climate change undermines the global functioning of marine food webs. Glob. Change Biol. 26, 1306–1318 (2020).
Google Scholar
Jones, J. et al. The microbiome of the gastrointestinal tract of a range-shifting marine herbivorous fish. Front. Microbiol. 9, 2000 (2018).
Google Scholar
Littman, R., Willis, B. L. & Bourne, D. G. Metagenomic analysis of the coral holobiont during a natural bleaching event on the Great Barrier Reef. Environ. Microbiol. Rep. 3, 651–660 (2011).
Google Scholar
Robinson, J. P. W. et al. Climate-induced increases in micronutrient availability for coral reef fisheries. One Earth 5, 98–108 (2022).
Google Scholar
Froese, R. & Pauly, D. FishBase (FishBase, 2021); www.fishbase.org
MacNeil, M. A. NutrientFishbase dataset. GitHub https://github.com/mamacneil/NutrientFishbase (2021).
Waldock, C., Stuart-Smith, R. D., Edgar, G. J., Bird, T. J. & Bates, A. E. The shape of abundance distributions across temperature gradients in reef fishes. Ecol. Lett. 22, 685–696 (2019).
Google Scholar
Breitburg, D. et al. Declining oxygen in the global ocean and coastal waters. Science 359, eaam7240 (2018).
Google Scholar
Chaudhary, C., Richardson, A. J., Schoeman, D. S. & Costello, M. J. Global warming is causing a more pronounced dip in marine species richness around the equator. Proc. Natl Acad. Sci. USA 118, e2015094118 (2021).
Google Scholar
Cheung, W. W. L., Reygondeau, G. & Frölicher, T. L. Large benefits to marine fisheries of meeting the 1.5°C global warming target. Science 354, 1591–1594 (2016).
Google Scholar
Golden, C. et al. Nutrition: fall in fish catch threatens human health. Nature 534, 317–320 (2016).
Google Scholar
Nash, K. L. & Graham, N. A. J. Ecological indicators for coral reef fisheries management. Fish Fish. 17, 1029–1054 (2016).
Google Scholar
Pereira, H. M. et al. Essential biodiversity variables. Science 339, 277–278 (2013).
Google Scholar
Brandl, S. J. et al. Coral reef ecosystem functioning: eight core processes and the role of biodiversity. Front. Ecol. Environ. 17, 445–454 (2019).
Google Scholar
Maire, E. et al. Micronutrient supply from global marine fisheries under climate change and overfishing. Curr. Biol. 31, 4132–4138 (2021).
Google Scholar
Miloslavich, P. et al. Essential ocean variables for global sustained observations of biodiversity and ecosystem changes. Glob. Change Biol. 24, 2416–2433 (2018).
Google Scholar
Graham, N. A. J. & Nash, K. L. The importance of structural complexity in coral reef ecosystems. Coral Reefs 32, 315–326 (2013).
Google Scholar
Nash, K. L., Graham, N. A. J., Wilson, S. K. & Bellwood, D. R. Cross-scale habitat structure drives fish body size distributions on coral reefs. Ecosystems 16, 478–490 (2013).
Google Scholar
Pratchett, M. S. et al. in Oceanography and Marine Biology: An Annual Review Vol. 46 (eds Gibson, R. N. et al.) 251–296 (CRC Press, 2008).
Graham, N. A. J. et al. Dynamic fragility of oceanic coral reef ecosystems. Proc. Natl Acad. Sci. USA 103, 8425–8429 (2006).
Google Scholar
Richardson, L. E., Graham, N. A. J., Pratchett, M. S., Eurich, J. G. & Hoey, A. S. Mass coral bleaching causes biotic homogenization of reef fish assemblages. Glob. Change Biol. 24, 3117–3129 (2018).
Google Scholar
Graham, N. A. et al. Lag effects in the impacts of mass coral bleaching on coral reef fish, fisheries, and ecosystems. Conserv. Biol. 21, 1291–1300 (2007).
Google Scholar
Hempson, T., Graham, N., Macneil, A., Hoey, A. & Wilson, S. Ecosystem regime shifts disrupt trophic structure. Ecol. Appl. 28, 191–200 (2018).
Google Scholar
Jouffray, J.-B. et al. Identifying multiple coral reef regimes and their drivers across the Hawaiian archipelago. Phil. Trans. R. Soc. B Biol. Sci. 370, 20130268 (2015).
Google Scholar
McLean, M. et al. Trait structure and redundancy determine sensitivity to disturbance in marine fish communities. Glob. Change Biol. 25, 3424–3437 (2019).
Google Scholar
Nash, K. L., Graham, N. A. J., Jennings, S., Wilson, S. K. & Bellwood, D. R. Herbivore cross-scale redundancy supports response diversity and promotes coral reef resilience. J. Appl. Ecol. 53, 646–655 (2016).
Google Scholar
Vaitla, B. et al. Predicting nutrient content of ray-finned fishes using phylogenetic information. Nat. Commun. 9, 3742 (2018).
Google Scholar
Kissling, W. D. et al. Towards global data products of essential biodiversity variables on species traits. Nat. Ecol. Evol. 2, 1531–1540 (2018).
Google Scholar
Edgar, G. J. et al. Reef Life Survey: establishing the ecological basis for conservation of shallow marine life. Biol. Conserv. 252, 108855 (2020).
Google Scholar
Pauly, D. & Zeller, D. Accurate catches and the sustainability of coral reef fisheries. Curr. Opin. Environ. Sustain. 7, 44–51 (2014).
Google Scholar
Worm, B. & Branch, T. A. The future of fish. Trends Ecol. Evol. 27, 594–599 (2012).
Google Scholar
McClanahan, T. R. et al. Critical thresholds and tangible targets for ecosystem-based management of coral reef fisheries. Proc. Natl Acad. Sci. USA 108, 17230–17233 (2011).
Google Scholar
Cinner, J. E. et al. Meeting fisheries, ecosystem function, and biodiversity goals in a human-dominated world. Science 368, 307–311 (2020).
Google Scholar
Robinson, J. P. W. et al. Managing fisheries for maximum nutrient yield. Fish Fish. 23, 800–811 (2022).
Google Scholar
Graham, N. A. et al. Extinction vulnerability of coral reef fishes. Ecol. Lett. 14, 341–348 (2011).
Google Scholar
Schartup, A. T. et al. Climate change and overfishing increase neurotoxicant in marine predators. Nature 572, 648–650 (2019).
Google Scholar
Free, C. M. et al. Impacts of historical warming on marine fisheries production. Science 363, 979–983 (2019).
Google Scholar
Pinsky Malin, L. et al. Preparing ocean governance for species on the move. Science 360, 1189–1191 (2018).
Google Scholar
Thorson, J. T. Predicting recruitment density dependence and intrinsic growth rate for all fishes worldwide using a data-integrated life-history model. Fish Fish. 21, 237–251 (2020).
Google Scholar
Ahern, M. B. et al. Locally-procured fish is essential in school feeding programmes in sub-Saharan Africa. Foods 10, 2080 (2021).
Google Scholar
UNEP-WCMC, WorldFish Centre, WRI & TNC. Global Distribution of Coral Reefs. Version 4.1. Ocean Data Viewer https://doi.org/10.34892/t2wk-5t34 (UN Environment World Conservation Monitoring Centre, 2021).
Morillo-Velarde, P. S. et al. Habitat degradation alters trophic pathways but not food chain length on shallow Caribbean coral reefs. Sci. Rep. 8, 4109 (2018).
Google Scholar
Kumar, M. et al. Minerals, PUFAs and antioxidant properties of some tropical seaweeds from Saurashtra coast of India. J. Appl. Phycol. 23, 797–810 (2011).
Google Scholar
Coleman, M. A. et al. Climate change does not affect the seafood quality of a commonly targeted fish. Glob. Change Biol. 25, 699–707 (2019).
Google Scholar
Sissener, N. H. Are we what we eat? Changes to the feed fatty acid composition of farmed salmon and its effects through the food chain. J. Exp. Biol. 221, jeb161521 (2018).
Google Scholar
Hadj-Hammou, J., Mouillot, D. & Graham, N. A. J. Response and effect traits of coral reef fish. Front. Mar. Sci. 8, 640619 (2021).
Google Scholar
Mouillot, D., Graham, N. A. J., Villéger, S., Mason, N. W. H. & Bellwood, D. R. A functional approach reveals community responses to disturbances. Trends Ecol. Evol. 28, 167–177 (2013).
Google Scholar
McMahon, K. W., Thorrold, S. R., Houghton, L. A. & Berumen, M. L. Tracing carbon flow through coral reef food webs using a compound-specific stable isotope approach. Oecologia 180, 809–821 (2016).
Google Scholar
McMahon, K., Hamady, L. L. & Thorrold, S. Ocean ecogeochemistry—a review. Oceanogr. Mar. Biol. 51, 327–374 (2013).
Chikaraishi, Y. et al. Determination of aquatic food-web structure based on compound-specific nitrogen isotopic composition of amino acids. Limnol. Oceanogr. Methods 7, 740–750 (2009).
Google Scholar
Bowes, R. E. & Thorp, J. H. Consequences of employing amino acid vs. bulk-tissue, stable isotope analysis: a laboratory trophic position experiment. Ecosphere 6, 14 (2015).
Google Scholar
Blanchard, J. L., Heneghan, R. F., Everett, J. D., Trebilco, R. & Richardson, A. J. From bacteria to whales: using functional size spectra to model marine ecosystems. Trends Ecol. Evol. 32, 174–186 (2017).
Google Scholar
Kleiber, D., Harris, L. M. & Vincent, A. C. J. Gender and small-scale fisheries: a case for counting women and beyond. Fish Fish. 16, 547–562 (2015).
Google Scholar
Source: Ecology - nature.com