in

Salt marshes create more extensive channel networks than mangroves

  • Fosberg, F. R. & Chapman, V. J. Mangrove Vegetation. Taxon 26, 113 (1977).

    Article 

    Google Scholar 

  • Vo, Q. T., Kuenzer, C., Vo, Q. M., Moder, F. & Oppelt, N. Review of valuation methods for mangrove ecosystem services. Ecol. Indic. 23, 431–446 (2012).

    Article 

    Google Scholar 

  • Costanza, R. et al. The value of the world’s ecosystem services and natural capital. Nature 387, 253–260 (1997).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Duke, N. C. et al. A world without mangroves?. Science. 317, 41b–42b (2007).

    Article 

    Google Scholar 

  • Barbier, E. B. et al. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81, 169–193 (2011).

    Article 

    Google Scholar 

  • Saderne, V. et al. Total alkalinity production in a mangrove ecosystem reveals an overlooked Blue Carbon component. Limnol. Oceanogr. Lett. https://doi.org/10.1002/lol2.10170 (2020).

  • Allen, J. R. L. Morphodynamics of Holocene salt marshes: a review sketch from the Atlantic and Southern North Sea coasts of Europe. Quat. Sci. Rev. 19, 1155–1231 (2000).

    ADS 
    Article 

    Google Scholar 

  • Fagherazzi, S. et al. Tidal networks 1. Automatic network extraction and preliminary scaling features from digital terrain maps. Water Resour. Res. 35, 3891–3904 (1999).

    ADS 
    Article 

    Google Scholar 

  • D’Alpaos, A., Lanzoni, S., Mudd, S. M. & Fagherazzi, S. Modeling the influence of hydroperiod and vegetation on the cross-sectional formation of tidal channels. Estuar. Coast. Shelf Sci. 69, 311–324 (2006).

    ADS 
    Article 

    Google Scholar 

  • D’Alpaos, A. & Marani, M. Reading the signatures of biologic-geomorphic feedbacks in salt-marsh landscapes. Adv. Water Resour. 93, 265–275 (2016).

    ADS 
    Article 

    Google Scholar 

  • Schwarz, C. et al. Self-organization of a biogeomorphic landscape controlled by plant life-history traits. Nat. Geosci. 11, 672–677 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Mariotti, G. & Canestrelli, A. Long-term morphodynamics of muddy backbarrier basins: fill in or empty out? Water Resour. Res. 53, 7029–7054 (2017).

    ADS 
    Article 

    Google Scholar 

  • Stark, J., Van Oyen, T., Meire, P. & Temmerman, S. Observations of tidal and storm surge attenuation in a large tidal marsh. Limnol. Oceanogr. 60, 1371–1381 (2015).

    ADS 
    Article 

    Google Scholar 

  • Montgomery, J., Bryan, K., Horstman, E. & Mullarney, J. Attenuation of tides and surges by mangroves: contrasting case studies from New Zealand. Water 10, 1119 (2018).

    Article 

    Google Scholar 

  • Temmerman, S. et al. Vegetation causes channel erosion in a tidal landscape. Geology 35, 631–634 (2007).

    ADS 
    Article 

    Google Scholar 

  • van Maanen, B., Coco, G. & Bryan, K. R. On the ecogeomorphological feedbacks that control tidal channel network evolution in a sandy mangrove setting. Proc. R. Soc. A Math. Phys. Eng. Sci. 471, 20150115 (2015).

    Google Scholar 

  • Bij de Vaate, I., Brückner, M. Z. M., Kleinhans, M. G. & Schwarz, C. On the Impact of Salt Marsh Pioneer Species-Assemblages on the Emergence of Intertidal Channel Networks. Water Resour. Res. 56, (2020).

  • Bouma, T. J. et al. Density-dependent linkage of scale-dependent feedbacks: a flume study on the intertidal macrophyte Spartina anglica. Oikos 118, 260–268 (2009).

    Article 

    Google Scholar 

  • Schwarz, C. et al. Impacts of salt marsh plants on tidal channel initiation and inheritance. J. Geophys. Res. Earth Surf. 119, 385–400 (2014).

    ADS 
    Article 

    Google Scholar 

  • Mcowen, C. J. et al. A global map of saltmarshes. Biodivers. Data J. 5, (2017).

  • Spalding, M. World Atlas of Mangroves. World Atlas of Mangroves https://doi.org/10.4324/9781849776608 (2010).

  • Fromard, F., Vega, C. & Proisy, C. Half a century of dynamic coastal change affecting mangrove shorelines of French Guiana. A case study based on remote sensing data analyses and field surveys. in. Mar. Geol. 208, 265–280 (2004).

    ADS 
    Article 

    Google Scholar 

  • Proisy, C. et al. Mud bank colonization by opportunistic mangroves: a case study from French Guiana using lidar data. Cont. Shelf Res. 29, 632–641 (2009).

    ADS 
    Article 

    Google Scholar 

  • Balke, T. et al. Windows of opportunity: thresholds to mangrove seedling establishment on tidal flats. Mar. Ecol. Prog. Ser. 440, 1–9 (2011).

    ADS 
    Article 

    Google Scholar 

  • Tomlinson, P. B. The botany of mangroves. Bot. Mangroves https://doi.org/10.2307/2996392 (1986).

    Article 

    Google Scholar 

  • Duke, N. C., Ball, M. C. & Ellison, J. C. Factors influencing biodiversity and distributional gradients in mangroves. Glob. Ecol. Biogeogr. Lett. 7, 27–47 (1998).

    Article 

    Google Scholar 

  • Swales, A., Bentley, S. J. & Lovelock, C. E. Mangrove-forest evolution in a sediment-rich estuarine system: Opportunists or agents of geomorphic change? Earth Surf. Process. Landf. 40, 1672–1687 (2015).

    ADS 
    Article 

    Google Scholar 

  • Nardin, W. et al. Dynamics of a fringe mangrove forest detected by Landsat images in the Mekong River Delta, Vietnam. Earth Surf. Process. Landf. 41, 2024–2037 (2016).

    ADS 
    Article 

    Google Scholar 

  • Proffitt, C. E., Travis, S. E. & Edwards, K. R. Genotype and elevation influence Spartina alterniflora colonization and growth in a created salt marsh. Ecol. Appl. 13, 180–192 (2003).

    Article 

    Google Scholar 

  • van Wesenbeeck, B. K. et al. Potential for sudden shifts in transient systems: distinguishing between local and landscape-scale processes. Ecosystems 11, 1133–1141 (2008).

    Article 

    Google Scholar 

  • Ranwell, D. S. Spartina salt marshes in southern England 3. Rates of establishment, succession and nutrient supply at Bridgewater Bay, Somerset. J. Ecol. 52, 95–105 (1964).

    Article 

    Google Scholar 

  • van Wesenbeeck, B. K., van de Koppel, J., Herman, P. M. J. & Bouma, T. J. Does scale dependent feedback explain spatial complexity in salt marsh ecosystems? Oikos 117, 152–159 (2008).

    Article 

    Google Scholar 

  • Taylor, C. M. & Hastings, A. Finding optimal control strategies for invasive species: a density-structured model for Spartina alterniflora. J. Appl. Ecol. 41, 1049–1057 (2004).

    Article 

    Google Scholar 

  • Vandenbruwaene, W. et al. Flow interaction with dynamic vegetation patches: Implications for biogeomorphic evolution of a tidal landscape. J. Geophys. Res. Earth Surf. 116, 1–13 (2011).

    Article 

    Google Scholar 

  • Mobberley, D. G. Taxonomy and distribution of the genus Spartina. (Iowa State University, 1953).

  • Gourgue, O. et al. A Convolution Method to Assess Subgrid-Scale Interactions Between Flow and Patchy Vegetation in Biogeomorphic Models. J. Adv. Model. Earth Syst. 127, 1–25 (2021).

  • Zong, L. & Nepf, H. Spatial distribution of deposition within a patch of vegetation. Water Resour. Res. 47, (2011).

  • Suyadi, Gao, J., Lundquist, C. J. & Schwendenmann, L. Characterizing landscape patterns in changing mangrove ecosystems at high latitudes using spatial metrics. Estuar. Coast. Shelf Sci. 215, 1–10 (2018).

    ADS 
    Article 

    Google Scholar 

  • Best, S. N. et al. Do salt marshes survive sea level rise? Modelling wave action, morphodynamics and vegetation dynamics. Environ. Model. Softw. 109, 152–166 (2018).

    Article 

    Google Scholar 

  • Chen, Y., Li, Y., Cai, T., Thompson, C. & Li, Y. A comparison of biohydrodynamic interaction within mangrove and saltmarsh boundaries. Earth Surf. Process. Landf. 41, 1967–1979 (2016).

    ADS 
    Article 

    Google Scholar 

  • Xie, D. et al. Mangrove diversity loss under sea-level rise triggered by bio-morphodynamic feedbacks and anthropogenic pressures. Environ. Res. Lett. 15, 114033 (2020).

    ADS 
    Article 

    Google Scholar 

  • Steel, T. J. & Pye, K. The development of salt marsh tidal creek networks: evidence from the UK. In Proceedings of the Canadian Coastal Conference 1, 267–280 (1997).

  • Fagherazzi, S. & Sun, T. A stochastic model for the formation of channel networks in tidal marshes. Geophys. Res. Lett. 31, L21503 (2004).

    ADS 
    Article 

    Google Scholar 

  • D’Alpaos, A., Lanzoni, S., Marani, M., Fagherazzi, S. & Rinaldo, A. Tidal network ontogeny: channel initiation and early development. J. Geophys. Res. 110, F02001 (2005).

    ADS 

    Google Scholar 

  • Marani, M. et al. On the drainage density of tidal networks. Water Resour. Res. 39, 1040 (2003).

    ADS 

    Google Scholar 

  • Liu, Z. et al. Efficient tidal channel networks alleviate the drought-induced die-off of salt marshes: Implications for coastal restoration and management. Sci. Total Environ. 749, 141493 (2020).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Kearney, W. S. et al. Salt marsh vegetation promotes efficient tidal channel networks. Nat. Commun. 7, 12287 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hood, W. G. Applying tidal landform scaling to habitat restoration planning, design, and monitoring. Estuar. Coast. Shelf Sci. 244, 106060 (2020).

    Article 

    Google Scholar 

  • Horstman, E., Dohmen-Janssen, C., Geomorphology, T. B.- & 2015, undefined. Tidal-scale flow routing and sedimentation in mangrove forests: Combining field data and numerical modelling. Elsevier

  • Coco, G. et al. Morphodynamics of tidal networks: Advances and challenges. Mar. Geol. 346, 1–16 (2013).

    ADS 
    Article 

    Google Scholar 

  • Geng, L., Gong, Z., Zhou, Z., Lanzoni, S. & D’Alpaos, A. Assessing the relative contributions of the flood tide and the ebb tide to tidal channel network dynamics. Earth Surf. Process. Landf. 45, 237–250 (2020).

    ADS 
    Article 

    Google Scholar 

  • Andutta, F. P., Wang, X. H., Li, L. & Williams, D. Hydrodynamics and Sediment Transport in a Macro-tidal Estuary: Darwin Harbour, Australia. in 111–129 (Springer, Dordrecht, 2014). https://doi.org/10.1007/978-94-007-7019-5_7

  • Elmqvist, T. & Cox, P. A. The Evolution of Vivipary in Flowering Plants. Oikos 77, 3 (1996).

    Article 

    Google Scholar 

  • Zhang, X., Leonardi, N., Donatelli, C. & Fagherazzi, S. Fate of cohesive sediments in a marsh-dominated estuary. Adv. Water Resour. 125, 32–40 (2019).

    ADS 
    Article 

    Google Scholar 

  • Nardin, W. & Edmonds, D. A. Optimum vegetation height and density for inorganic sedimentation in deltaic marshes. Nat. Geosci. 7, 722–726 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Swales, A., Bentley, S. J., Lovelock, C. & Bell, R. G. Sediment Processes and Mangrove-Habitat Expansion on a Rapidly-Prograding Muddy Coast, New Zealand. In Coastal Sediments ’07 1441–1454 (American Society of Civil Engineers, 2007). https://doi.org/10.1061/40926(239)111

  • Wang, F., Lu, X., Sanders, C. J. & Tang, J. Tidal wetland resilience to sea level rise increases their carbon sequestration capacity in United States. Nat. Commun. 10, 1–11 (2019).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Kristensen, E., Bouillon, S., Dittmar, T. & Marchand, C. Organic carbon dynamics in mangrove ecosystems: A review. Aquat. Bot. 89, 201–219 (2008).

    CAS 
    Article 

    Google Scholar 

  • Fagherazzi, S. et al. Fluxes of water, sediments, and biogeochemical compounds in salt marshes. Ecol. Process 2, 1–16 (2013).

    Article 

    Google Scholar 

  • Kirchner, J. W. Statistical inevitability of Horton’s laws and the apparent randomness of stream channel networks. Geology 21, 591–594 (1993).

    ADS 
    Article 

    Google Scholar 

  • Vandenbruwaene, W., Meire, P. & Temmerman, S. Formation and evolution of a tidal channel network within a constructed tidal marsh. Geomorphology (2012).

  • Marani, M. et al. Patterns in tidal environments: salt-marsh channel networks and vegetation. in Geoscience and Remote Sensing Symposium. IEEE 5 3269–3271 (2003).

  • Horstman, E. M., Karin R. B., and Julia C. M. “Drag variations, tidal asymmetry and tidal range changes in a mangrove creek system.” Earth Surf. Process. Landf. (2021).

  • R. Core, Team. R: A language and environment for statistical computing. (2013).

  • Lillesand, T. M. & Kiefer, R. W. Remote Sensing and Image Interpretation. John Willey & Sons. Inc, USA. (1994).

  • Vandenbruwaene, W., Bouma, T. J., Meire, P. & Temmerman, S. Bio-geomorphic effects on tidal channel evolution: impact of vegetation establishment and tidal prism change. Earth Surf. Process. Landforms 38, 122–132 (2013).

    ADS 
    Article 

    Google Scholar 

  • Stefanon, L., Carniello, L., D’Alpaos, A. & Lanzoni, S. Experimental analysis of tidal network growth and development. Cont. Shelf Res. 30, 950–962 (2010).

    ADS 
    Article 

    Google Scholar 

  • Braat, L., Leuven, J. R. F. W., Lokhorst, I. R. & Kleinhans, M. G. Effects of estuarine mudflat formation on tidal prism and large-scale morphology in experiments. Earth Surf. Process. Landf. 44, 417–432 (2019).

    ADS 
    Article 

    Google Scholar 

  • Kleinhans, M. G. et al. Turning the tide: Comparison of tidal flow by periodic sea level fluctuation and by periodic bed tilting in scaled landscape experiments of estuaries. Earth Surf. Dyn. 5, 731–756 (2017).

    ADS 
    Article 

    Google Scholar 

  • Paola, C., Straub, K., Mohrig, D. & Reinhardt, L. The ‘unreasonable effectiveness’ of stratigraphic and geomorphic experiments. Earth-Sci. Rev. 97, 1–43 (2009).

    ADS 
    Article 

    Google Scholar 

  • Kleinhans, M. G., Leuven, J. R. F. W., Braat, L. & Baar, A. Scour holes and ripples occur below the hydraulic smooth to rough transition of movable beds. Sedimentology 64, 1381–1401 (2017).

    Article 

    Google Scholar 

  • Lokhorst, I. R., Lange, S. I., Buiten, G., Selaković, S. & Kleinhans, M. G. Species selection and assessment of eco‐engineering effects of seedlings for biogeomorphological landscape experiments. Earth Surf. Process. Landf. 44, 2922–2935 (2019).

    ADS 
    Article 

    Google Scholar 

  • Widdows, J. et al. Inter-comparison between five devices for determining erodability of intertidal sediments. Cont. Shelf Res. 27, 1174–1189 (2007).

    ADS 
    Article 

    Google Scholar 

  • Verney, R., Brun-Cottan, J. C., Lafite, R., Deloffre, J. & Taylor, J. A. Tidally-induced shear stress variability above intertidal mudflats in the macrotidal seine estuary. Estuaries and Coasts 29, 653–664 (2006).

    Article 

    Google Scholar 

  • Wu, W., Perera, C., Smith, J. & Sanchez, A. Critical shear stress for erosion of sand and mud mixtures. J. Hydraul. Res. 56, 96–110 (2018).

    Article 

    Google Scholar 

  • Wolters, M., Garbutt, A., Bekker, R. M., Bakker, J. P. & Carey, P. D. Restoration of salt-marsh vegetation in relation to site suitability, species pool and dispersal traits. J. Appl. Ecol. 45, 904–912 (2007).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Punishment institutions selected and sustained through voting and learning

    MIT engineers introduce the Oreometer